首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3085篇
  免费   358篇
  国内免费   295篇
测绘学   897篇
大气科学   183篇
地球物理   192篇
地质学   1509篇
海洋学   281篇
天文学   59篇
综合类   208篇
自然地理   409篇
  2024年   36篇
  2023年   142篇
  2022年   190篇
  2021年   242篇
  2020年   139篇
  2019年   179篇
  2018年   107篇
  2017年   129篇
  2016年   127篇
  2015年   132篇
  2014年   205篇
  2013年   125篇
  2012年   177篇
  2011年   161篇
  2010年   155篇
  2009年   162篇
  2008年   160篇
  2007年   124篇
  2006年   107篇
  2005年   83篇
  2004年   78篇
  2003年   91篇
  2002年   58篇
  2001年   69篇
  2000年   55篇
  1999年   62篇
  1998年   42篇
  1997年   40篇
  1996年   36篇
  1995年   30篇
  1994年   39篇
  1993年   31篇
  1992年   34篇
  1991年   47篇
  1990年   44篇
  1989年   48篇
  1988年   9篇
  1987年   4篇
  1985年   3篇
  1957年   7篇
  1954年   1篇
  1952年   4篇
  1951年   1篇
  1948年   4篇
  1946年   2篇
  1945年   4篇
  1944年   1篇
  1942年   1篇
  1941年   4篇
  1940年   1篇
排序方式: 共有3738条查询结果,搜索用时 15 毫秒
41.
东南极Lambert冰川-Amery冰架系统平衡通量分布的计算   总被引:2,自引:1,他引:2  
王清华  宁津生 《冰川冻土》2002,24(5):500-505
通过对Lambert冰川盆地(LGB)考察路线上约1 700 km长的LGB剖面和距冰架末端约50 km、长150 km的A剖面, 分别利用GPS冰流速值及雷达测厚值进行冰通量的计算得出:每年流过LGB剖面的冰通量为43.95 Gta-1, 而通过A剖面的冰通量仅为26. 42 Gt*a-1, Amery冰架底部净融化量为7.8 Gt*a-1. 整个Lambert冰川-Amery冰架系统(LAS)地区的表面净物质平衡总量约为90 Gt*a-1; LGB地区的表面净物质平衡总量为46 Gt*a-1. 通过分析得出, 整个LAS地区及LGB地区均处于物质正平衡状态, 而LAS流域的上游区域S'则处于物质负平衡状态.  相似文献   
42.
天山奎屯河哈希勒根51号冰川表面运动特征分析   总被引:14,自引:14,他引:14  
奎屯河哈希勒根51号冰川位于新疆奎屯市以南的天山依连哈比尔尕山北坡, 奎屯河上游支沟哈希勒根河源区. 1999年8月, 在该冰川上布设了用于冰川运动和冰川物质平衡观测研究的测杆18根, 并进行了冰川表面运动、冰川物质平衡和冰川末端变化的首次观测. 根据2000年8月和2001年8月的冰川运动观测资料, 分析了奎屯河哈希勒根51号冰川的运动特征和冰舌末端的变化状况. 结果表明: 奎屯河51号冰川应属于亚大陆型冰川; 1999/2000年度和2000/2001年度的表面运动值不大, 最大流速点的年运动速度为3.15 ma-1; 运动速度垂直分量UZ的变化规律同乌鲁木齐河源1号冰川的变化规律相同, 即消融区的显出流作用和积累区的显入流作用. 该冰川的冰舌末端处于相对稳定的退缩状态, 1964-1999年间平均退缩量约为1.4 m*a-1, 而1999-2001年间的平均退缩量为5.0 m*a-1, 反映出冰川退缩增大的趋势.  相似文献   
43.
裴文中教授是中国冰缘地貌研究的启动者,他在近半个世纪前发表的两篇论文紧跟国际科学研究发展形势,详细阐述了冰缘作用的特点、过程及其对解决中国东部第四纪古冰川问题的意义。裴老最主要的贡献在于他当时强调了在古冰缘研究中综合分析环境背景的重要性,而不是孤立地研究冰缘现象,这种在地学研究中必须遵循的原则,对于现在的科学研究工作者仍然有很大的启示。  相似文献   
44.
分析了西北地区水资源状况,认为西北有丰富的地下水资源和巨大的“固体水库”-冰川和雪峰。提出了在试验成功的基础上变“固体水库”为液体水库,就地取水,改造大西北的设想。  相似文献   
45.
地震侦探     
世界范围的地震台网正在监测从跳跃的袋鼠到气候的变化这样一些令人吃惊的事件。奥汉隆 ( L arry O' Hanlon)与已经发现了地震资料不同寻常用途的地震学家们对话。2 0 0 0年 8月 ,当俄罗斯的库尔斯克号潜艇全体水手随艇沉入巴伦支海时 ,没有人想到要去告诉地震学家。但是 ,2 0 0 1年 1月 ,正是这个学科的研究人员使得关于这场灾难起因的争论最终告以结束。据亚利桑那大学的科珀 ( Keith Koper)报道 ,波罗的海的地震台站记录到了库尔斯克号上爆炸产生的可说明问题的震动。这一证据表明 ,这场悲剧是当潜艇在水面上时艇上的一枚鱼雷意外爆炸…  相似文献   
46.
高山增水效应及其水资源意义   总被引:9,自引:1,他引:9  
丁贤荣 《山地学报》2003,21(6):681-685
根据高山上云、雾、雨、雪、径流等水资源丰富现象,分析了高山冰川、植被、地形等与汽-水作用关系,提出高山增水效应概念和高山区水资源开发与保护的新思路。高大山体及其造成的垂向对流、高山冰川和高山植被共同作用形成了高山增水效应,并形成良性增水系统。山体愈高大,增水效应愈明显。对内陆干旱地区开发利用更多的高山水资源具有意义。  相似文献   
47.
天山1号冰川厚度和冰下地形探测与冰储量分析   总被引:12,自引:0,他引:12       下载免费PDF全文
通过对天山乌鲁木齐河源 1号冰川的雷达回波探测 ,清晰地揭示出冰川底部冰 /岩界面的位置及其起伏变化特征 ,显示出雷达波对山地冰川良好的穿透能力和对冰下地形的高分辨能力 ,冰川雷达测厚的误差小于 1 .2 %。研究结果显示 ,1号冰川东支冰川平均厚度为 5 8.77m ,西支冰川平均厚度为 44.84m ,冰体厚度最大值发育于冰川中部趋于主流线位置。冰川冰储量计算表明 ,东支冰储量为 0 .0 5 1 868km3,西支冰储量为 0 .0 2 0 2 1 0km3。表面和底部地形有明显差异 ,主要因冰川动力过程对基岩强烈的地貌作用所致 ,意味着冰床的起伏地形对冰川浅层冰体的运动过程影响不显著。  相似文献   
48.
乌鲁木齐10号泉流量变化的多尺度小波分析与异常识别   总被引:2,自引:0,他引:2  
结合10号泉开始观测以来的震例,利用基于小波分析的多尺度分析原理对乌鲁木齐10泉流量的日均值观测序列进行了分析,总结了10号泉流量多尺度分析结果的映震特征。10号泉流量的地震前兆异常绝大多数是高值异常且具有较好的重复性,即一般都是在高值异常结束后几个月之内发生地震,个别情况下地震会发生在高值异常持续时段内。初步可以认定,利用基于小波变换的多尺度分析原理将流量数据分解成若干频段后,能够较好地识别和提取流量原始测值中不易分辨的震前异常。  相似文献   
49.
末次盛冰期东亚气候的数值模拟   总被引:16,自引:0,他引:16  
用美国国家大气研究中心(NCAR)的CCM3全球气候模式研究了末次盛冰期(LGM)和现代情景下的东亚季风和地面水分特征以及青藏高原冰川扩张. 结果表明: 在LGM时, 我国北方和西太平洋地区冬季风显著加强, 南方地区冬季风变化不大; 而对LGM时期的夏季风, 我国南方和南海地区显著减弱, 北方变化不显著; LGM时期季风的这种变化, 使我国东北、华北大部分地区、黄土高原和青藏高原东部年降水量比现代显著减少, 造成这些地区当时地面净失去更多水分, 使当地变干燥, 其中青藏高原东部、黄土高原西部地面变干燥最显著; 而在LGM时期青藏高原中部一些地区由于蒸发减少使地面变湿润, 有利于当时这些地区的湖面上升; 此外, LGM时期冬季青藏高原 绝大部分地区积雪明显比现代厚, 通过分析模拟资料计算的冰川平衡线高度发现: 尽管我们模拟出LGM时期较小的降温幅度, 但是通过模式中大气物理过程青藏高原降水和气温之间保持平衡, LGM时期当地冰川平衡线高度与现代相比降低了300~900 m, 即从现代的5400 m以上降为4600~5200 m, 指示着LGM时期青藏高原冰川的大规模扩张.  相似文献   
50.
慕士塔格冰芯钻孔温度测量结果   总被引:1,自引:2,他引:1  
2002年8月对慕士塔格冰川累积区海拔6300m左右的两根冰芯钻孔(其中—根达到冰川底部基岩)进行了温度测量,揭示了该处冰川的温度分布特征.结果表明:慕士塔格冰芯的冰温是目前中低纬地区山地冰川中最低的,达-21.79℃,该最低温度出现的位置在35m以下;冰床底部的温度为-20.76℃,也远低于其它山地冰川的冰床温度,极低的温度对成冰过程有重要影响,并有利于获得可靠的冰芯记录。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号