首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   16篇
  国内免费   49篇
测绘学   6篇
大气科学   29篇
地球物理   12篇
地质学   104篇
海洋学   20篇
天文学   4篇
综合类   16篇
自然地理   11篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   20篇
  2013年   13篇
  2012年   10篇
  2011年   11篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   9篇
  2006年   14篇
  2005年   5篇
  2004年   3篇
  2003年   10篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1995年   2篇
  1994年   10篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
71.
煤炭的生成 煤炭的生成,其实可以用一句话来概括:煤炭是由古代的植物生成的.世界上第一个提出"植物成煤"论点的是俄国著名学者罗蒙诺索夫. 显微镜发明以后,人们了解到,煤炭的化学成分主要是碳、氢、氧、氮这几种元素,其构成与植物基本一致,两者所含的元素比例也大致相似.对比现代植物的组织切片、硅化木的切片、煤炭的切片,我们不准发现,植物、硅化术、炭化木的细胞结构是非常相似的. 那么,植物究竟是怎样形成煤炭的呢?  相似文献   
72.
近几年,PM2.5浓度上升导致灰霾事件频繁发生,已经引起了广泛的关注。碳组分是PM2.5中的重要组分,被认为是灰霾形成和转化的重要因素,因此,研究PM2.5中含碳组分的来源及其化学过程具有重要的意义。本研究于2016年12月至2017年8月期间在南昌地区共采集105个PM2.5样品,分析了PM2.5样品中总碳(TC)浓度及其碳同位素(δ^13C)。结果表明,采样期间TC的年平均浓度为(12.1±2.1)μg/m^3,总体上呈现冬季高、夏季低的变化趋势,可能是受不同季节气象因素和来源变化的影响。δ^13C的年平均值为(?26.1±0.2)‰,总体上呈现冬季高、春季低的变化趋势,可能是受不同来源的影响。利用贝叶斯模型计算南昌地区PM2.5中TC主要来源于C3植物燃烧和机动车尾气,年源贡献分别为49.3%和28.7%;其次是煤燃烧和C4植物燃烧,年源贡献分别为17.7%和4.2%。春季δ^13C值偏低是由于C3植物燃烧贡献相对较高,而冬季δ^13C值偏高则是煤燃烧贡献增加。  相似文献   
73.
柳忠泉 《安徽地质》2009,19(4):255-259
大别造山带和合肥盆地是紧密相连的两个构造单元,它们在形成和时空演化上具有密切的关系。在大别造山带内发现的可燃天然气和发生燃烧的隧道具有明显的区域性,集中分布于磨子潭-晓天断裂以南的北大别杂岩带和信阳-舒城断裂附近的早石炭世变质石英片岩中,磨子潭-晓天断裂和信阳-舒城断裂是连通深部的气源通道断裂;推覆体之下的寒武系凤台组和北淮阳型石炭系两套海相烃源岩是隧道可燃天然气的主力气源岩,其中下寒武统凤台组烃源岩具有高碳、高“R0”、高Tmax低氯仿“A”的特点,已进入热演化的过成熟阶段;北淮阳型石炭系烃源岩有机质丰度高,以Ⅲ型干酪根为主,热演化程度很高,大量的油气已经生成,最重要的是研究其成烃过程与圈闭配套史的关系。大别造山带隧道可燃天然气的发现展示了合肥盆地区深部海相层系良好的勘探前景,因此下步勘探重心应从“中新生代盆地系统”转移到“深部海相层系”,以寻找“古生古储”或“古生新储”类型油气藏为主。  相似文献   
74.
本方法使用德国耶拿分析仪器股份公司的AASnovAA(原子吸收光谱仪,断续流动注射SFS和50 mm燃烧头刮板;AAS contrAA高分辨率连续光源火焰原子吸收光谱仪;测定水悬浮液中硅,并对两仪器的测定结果进行对比。1样品制备为保证悬浮液样品均匀,将盛装悬浮液的容器封好后置于超声波水浴中10 min,然后立即将约0.5 g样品转移至50 mL容量瓶中,用1 g/L KCl(水溶液)定容至刻度线。各样品在测定前要充分摇匀。另外,要留意Si浓度的降低(1 h后约减少14%)。2仪器工作条件设定原子吸收光谱仪的工作条件:波长251.6 nm,狭缝0.2 nm,火焰类型N2O/C2H2,燃气流量25  相似文献   
75.
2001年3月7日与8日在香港与昆明用电化学臭氧探空仪探测到了对流层低层异常的高浓度臭氧分布. 本文使用NCEP(美国环境预报中心)分析资料、中尺度数值模式MM5模拟的大气环流数据、卫星观测的东南亚地区的生物体燃烧状况、气溶胶指数等资料,分析了这段时间的天气形势、大气环流、空气的后向轨迹以及生物体燃烧产生的烟尘的轨迹,结果发现高浓度的臭氧空气来源于有生物体燃烧的中南半岛地区. 燃烧烟尘的轨迹还表明生物体燃烧地区的下风方的对流层低层臭氧的分布会受到上游地区生物体燃烧产物的影响.  相似文献   
76.
提出了一种新的火焰探测方法,性能可靠,安全适用,有很好的性价比。对于各种需要进行火焰检测及控制的燃烧过程均具有广泛的实用性。  相似文献   
77.
自然火灾碳排放估算模型参数的遥感反演进展   总被引:1,自引:1,他引:1  
植被燃烧会产生大量的温室气体,为及时了解自然火灾对区域和全球尺度的碳循环和碳平衡模式的影响,有必要研究自然火灾碳排放的大尺度估算方法。结合遥感技术"宏观、快速、实时、客观"获取地表信息的独特优势,对利用遥感技术估算自然火灾碳排放的方法进行综述,概括了自然火灾碳排放使用的估算模型及其需要的主要输入参数,其次分别介绍了模型输入参数的遥感估算方法,并对各方法的优缺点进行分析和评价,最后提出现有方法的改进建议。  相似文献   
78.
煤炭与铀两种资源在空间配置和成矿上有关联性,其合理开发利用及污染控制是我国国民经济和社会持续发展的重大需求。基于大量文献调研及前期研究成果,探讨了铀在煤中赋存分布及其在洗选、燃烧、淋滤过程中的迁移特征,取得一些认识:①煤中铀的富集成矿与成煤大地构造演化相关联,西南富铀煤主要与峨眉山玄武岩及断裂构造有关;西北富铀煤一般分布在拗陷和断拗陷盆地开阔地带一侧并与上覆砂岩型铀矿有关。②煤中铀主要与煤中有机质(主要是腐殖酸)结合,富铀煤中铀可以微细粒含铀矿物形式存在,并与有机硫、硫化物紧密共生,故在选煤过程中,无论重选还是浮选,其洗选脱除率均不高(最高为68.3%),部分煤浮选时铀甚至富集到精煤中;在煤燃烧过程中,铀或多或少都会以气相形式挥发到大气中。③富铀煤一般也同时富集V、Mo、Se、Re、Cr等高价态变价元素,这与有机体深埋分解造成的强还原环境有关,对于那些不变价元素如Sc、Y、La等的沉淀富集主要与腐殖酸形成的酸化条件有关;这些共生组合元素,在富铀煤的分选及煤矸石的淋滤过程中表现出一致的迁移行为。④电厂燃煤过程中铀主要富集(呈数量级的增加)到飞灰和底灰中,粉煤灰中铀淋出浓度一般随淋滤液pH的增加呈降低趋势,其萃取率随灰化温度的升高呈现降低趋势。研究结果为铀资源利用和环境污染控制提供参考和依据。   相似文献   
79.
测试地质样品中的硫含量,以电感耦合等离子体发射光谱法(ICP-OES)和燃烧-红外吸收光谱法应用最为广泛。ICP-OES法灵敏度高、稳定性好,但受样品预处理和基体干扰的影响较大;燃烧-红外吸收光谱法便捷高效,但受结晶水红外吸收干扰,分析硫含量低的样品稳定性较差。本文采用5种酸溶方式处理样品ICP-OES测定硫含量,同时采用燃烧-红外吸收光谱法测定低中高含量的硫,综合比较了两类方法的检出限、检测范围、精密度和准确度、分析效率等,明确了各方法的适用范围。实验中确定了燃烧-红外吸收光谱法最佳测试条件为:称样量0.0500g,燃烧时间25s,分析时间40s,氧气流量4.0L/min;通过标准物质验证,该方法检出限为10×10-6,检测范围为10×10-6~470000×10-6,相对标准偏差(RSD)<6%(n=12),相对误差绝对值小于8%。实验结果表明,ICP-OES分析效率高,但是样品处理时间长,检测范围不如燃烧-红外吸收光谱法宽;燃烧-红外吸收光谱法采用固体直接进样,成本低,用高氯酸镁作为干燥剂可解决结晶水红外吸收...  相似文献   
80.
This is a review talk. The first part of the talk is to introduce briefly the evolutionary picture of stars with various mass after hydrogen burning. The second one of the talk is about some important physical factors affected on the stellar evolution. The content of the second part of the talk is as follows: A) Physics controlling nuclear burning in the stars 1. Ignition temprature of nuclear burning 2. Lower limit on the core mass of stars for igniting nuclear burning  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号