首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   64篇
  国内免费   120篇
测绘学   11篇
地球物理   25篇
地质学   1020篇
海洋学   12篇
综合类   10篇
自然地理   16篇
  2024年   2篇
  2023年   6篇
  2022年   2篇
  2021年   19篇
  2020年   28篇
  2019年   29篇
  2018年   12篇
  2017年   17篇
  2016年   30篇
  2015年   9篇
  2014年   86篇
  2013年   38篇
  2012年   54篇
  2011年   67篇
  2010年   51篇
  2009年   58篇
  2008年   45篇
  2007年   37篇
  2006年   37篇
  2005年   34篇
  2004年   25篇
  2003年   31篇
  2002年   31篇
  2001年   29篇
  2000年   29篇
  1999年   27篇
  1998年   29篇
  1997年   23篇
  1996年   30篇
  1995年   19篇
  1994年   18篇
  1993年   17篇
  1992年   17篇
  1991年   17篇
  1990年   16篇
  1989年   15篇
  1988年   20篇
  1987年   16篇
  1986年   13篇
  1985年   9篇
  1981年   2篇
排序方式: 共有1094条查询结果,搜索用时 15 毫秒
151.
胶东地区是我国最大金成矿聚集区,其金矿床的成因长期以来一直存在很大争议,三山岛金矿床是胶东地区最大的金矿床,通过采用LA-ICP-MS分析不同阶段黄铁矿中微量元素组成,可以探讨成矿流体演化及成矿物质来源。根据野外地质特征及岩相学观察,结合SEM结构分析将三山岛金矿床的黄铁矿分为3个阶段,6个亚类,即黄铁绢英岩化带(Py1)中包裹大量绢云母和石英的Py1-a和表面光滑的Py1-b,石英—黄铁矿±菱铁矿脉(Py2)中富含矿物包裹体的Py2-a和与菱铁矿共生且表面光滑的Py2-b,石英—多金属硫化物脉(Py3)中有很多细粒多金属硫化物包裹体的Py3-a和表面光滑的Py3-b。3个阶段黄铁矿晶格中金含量均很低,大部分小于1×10^-6,金主要以可见金形式存在。从早阶段到晚阶段黄铁矿中Au与Ag,Cu,Pb,Sb有较好的正相关性,且含量有逐渐增加的趋势。最早阶段黄铁矿中Co+Ni的含量很高(最高为9268×10^-6),反映了早期黄铁矿可能来源于岩浆岩源区,后期Co/Ni值逐渐降低,暗示了成矿流体温度逐渐降低。结合地质特征和黄铁矿微量元素研究,表明三山岛金矿床成矿物质可能来源于深部岩浆热液储库,通过地震泵机制沿断裂构造多次侵位成矿。  相似文献   
152.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   
153.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   
154.
湘南地区“黄沙坪式”铅锌矿床地质特征及找矿方向   总被引:9,自引:0,他引:9  
“黄沙坪式”铅锌矿是实现湘南地区新一轮铅锌找矿重大突破的主攻类型。本文系统介绍了这类矿床的地质特征和成矿规律,指出了主要找矿标志和优选靶区,并提出了下步工作建议  相似文献   
155.
八庙-青山金红石矿床地球化学特征   总被引:6,自引:0,他引:6  
徐少康 《矿产与地质》1999,13(5):293-298
金红石矿床含矿岩石常量元素总体上与玄武岩接近,但以低硅,高钛,高CO2,高碱度为特征。矿床微量元素与地壳的差别显著,稀土元素较高,分布模式呈轻稀土富集型,Eu一般为正常型与碧玄岩最接近,Ti与Ba,Co,Pb,Sr,Th,V,Y及稀土元素呈正相关与Cr和Ni呈负相关,δ^34S多数与(超)铁镁质岩石接近,最大值小于且靠近现代海水。  相似文献   
156.
江西银山铜多金属矿床成因再认识   总被引:5,自引:0,他引:5  
黄定堂 《矿产与地质》1999,13(4):199-203
从矿体形态、蚀变、矿化分带、稳定同位素和矿物包裹体等方面论述了矿床与本区岩浆活动在时间、空间和成矿物质来源等方面的关系,提出了银山铜多金属矿床是与燕山早期岩浆活动有关的火山—次火山热液矿床的新认识。  相似文献   
157.
大水沟碲矿床成矿物理化学条件研究   总被引:11,自引:0,他引:11       下载免费PDF全文
李保华  曹志敏 《地质科学》1999,34(4):463-472
本文在对大水沟碲矿床各成矿阶段矿物共生分析、成矿温度、矿液成分研究的基础上,对成矿的其它物理化学条件,如pH、fO2、fS2、fTe2等作了热力学计算,并结合矿床地质资料,计算与分析了成矿过程中碲的迁移形式及富集机理。  相似文献   
158.
伍皓  夏彧  周恳恳  张建军 《岩石学报》2020,36(2):589-600
锆石的U-Pb测年、Hf和O同位素及稀土、微量元素的研究与应用已获得诸多进展,但锆石中铀含量所蕴藏的地质意义却较少被关注。华南花岗岩型铀矿床的铀源一直存在争议,不同观点认为其分别来自早期已固结地质体、分异岩浆、地幔柱或热点以及U、Th、K富集圈。为尝试利用锆石中的铀含量来追索铀源,本文通过搜集诸广山南体花岗岩锆石U-Pb同位素测年文献,掌握了该花岗岩中14个岩体、37件样品、3种岩性,共467个锆石定年数据。通过数据分析发现印支期(253Ma、244Ma)和燕山期(139Ma、124Ma)具高分异特征的4件酸性岩脉(小岩体)样品中锆石的铀含量明显高于同期岩体。依据铀矿床中高分异酸性岩脉(小岩体)侵位期、基性岩脉侵位期、铀成矿早期(140~90Ma)三者的良好对应关系,结合这一锆石铀含量指示,初步认为华南花岗岩型铀矿床中铀可能主要来自高分异花岗岩浆;推测花岗岩型铀成矿可能属壳幔混合作用结果,即铀源来自地壳分异岩浆,成矿流体和矿化剂主要来自地幔,而成矿空间受断裂系统控制。岩体锆石铀含量或可在铀源丰度、矿床品位判别等方面发挥积极作用。  相似文献   
159.
乌拉嘎金矿床地质地球化学特征研究   总被引:8,自引:3,他引:5  
乌拉嘎金矿矿体赋存于燕山晚期的斜长花岗斑岩与黑龙江群下亚群接触带附近的近东西向展布的构造角砾岩中,围岩蚀变强烈;金矿化主要受角砾岩带控制。矿床成矿微量元素组合为Au、Hg、As、Sb,且含量均呈向下递增的趋势。LaN/YbN值变化范围为14.146~28.311,稀土元素配分模式为右倾的轻稀土富集型;∑LREE:165.76~62.68;∑HREE:45.82~15.2;LREE/HREE为6.09~4.124,为轻稀土富集型。岩体中流体包裹体以低盐、低压且有天水加入为特征,为典型的浅成低温热液型矿床。  相似文献   
160.
吴迪  刘永江  李伟民  常瑞虹 《岩石学报》2020,36(8):2571-2588
连山关地区位于华北克拉通北缘铀成矿省辽东铀成矿带,已知铀矿床(点)均发育在韧性剪切带附近。为了解韧性剪切带运动学、几何学构造变形机制及与铀矿的关系,本文以连山关岩体周缘韧性剪切带为研究对象,通过野外宏观调查和室内微观研究相结合的研究方法,探讨构造变形期次、韧性剪切带形成机理及其对铀成矿的控制作用。研究表明:连山关岩体周缘发育的韧性剪切带与近南北向挤压构造变形有关,其右行韧性剪切带应变类型为压扁应变,属于一般压缩-平面应变范围,Flinn指数K值在0.19~0.69之间,岩石类型属于S/SL型构造岩。研究区内铀矿体均为隐伏盲矿体,主要赋存于沿着连山关岩体和辽河群接触带右行剪切作用形成的背斜褶皱核部,和北东东向断裂关系密切。综合分析认为,连山关岩体南缘北西向韧性剪切带为一级控矿构造,是区内铀矿热液运移的通道,而剪切带边部的晚期北东东向断裂则是铀矿储存空间;铀源可能来自于太古宙古风化壳,并在大型韧性剪切活动(提供热液运移通道)和基性脉岩侵入(提供热源和还原剂)等综合因素作用下运移、富集成矿。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号