首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2580篇
  免费   544篇
  国内免费   1565篇
测绘学   6篇
大气科学   1篇
地球物理   266篇
地质学   4124篇
海洋学   73篇
天文学   3篇
综合类   132篇
自然地理   84篇
  2024年   12篇
  2023年   40篇
  2022年   78篇
  2021年   99篇
  2020年   117篇
  2019年   145篇
  2018年   155篇
  2017年   138篇
  2016年   163篇
  2015年   141篇
  2014年   184篇
  2013年   201篇
  2012年   240篇
  2011年   173篇
  2010年   174篇
  2009年   173篇
  2008年   211篇
  2007年   218篇
  2006年   236篇
  2005年   203篇
  2004年   182篇
  2003年   167篇
  2002年   123篇
  2001年   134篇
  2000年   118篇
  1999年   138篇
  1998年   100篇
  1997年   107篇
  1996年   76篇
  1995年   61篇
  1994年   82篇
  1993年   60篇
  1992年   55篇
  1991年   45篇
  1990年   39篇
  1989年   20篇
  1988年   16篇
  1987年   28篇
  1986年   13篇
  1985年   8篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有4689条查询结果,搜索用时 906 毫秒
101.
Abstract The petrogenesis of the Ulsan carbonate rocks in the Mesozoic Kyongsang Basin of South Korea, which have previously been interpreted as limestone of Paleozoic age, is reconsidered in the present study. Within the Kyongsang Basin, a small volume of carbonate rocks, containing a magnetite deposit and spatially associated ultramafic rocks, is surrounded by sedimentary, volcanic and granitic rocks of the Mesozoic age. The simple cross‐cutting relationships and other outcrop features of the area indicate that the carbonate rocks are an intrusive phase and younger than the other surrounding Mesozoic rocks. The Ulsan carbonates have low concentrations of rare earth elements (REE) and trace elements with the carbon and oxygen isotope values in the range of δ13CPDB = 2.4 to 4.0‰ and δ18OSMOW = 17.0 to 19.5‰. Outcrop evidence and geochemical signatures indicate that the Ulsan carbonates were formed from crustal carbonate melts, which were generated by the melting/fluxing of crustal carbonate materials, caused by the emplacement‐related processes of alkaline A‐type granitic rocks. Compared to typical mantle‐derived carbonatites associated with silica‐undersaturated, strongly peralkaline systems, the relatively small size and geochemical characteristics of the Ulsan carbonates reflect carbonatite genesis in a silica‐saturated, weakly alkali intrusive system. Major deep‐seated tectonic fractures formed by the collapse of the cauldron or the rift system associated with the opening of the East Sea (Japan Sea) might have facilitated the ascent of the crustal carbonate melts.  相似文献   
102.
渤海—鲁西地区的白垩早第三纪火山岩在渤海东部主要沿郯庐断裂带呈北北东向分布,在渤海西部和鲁西地区主要沿北西向断裂带分布。白垩纪火山岩以安山岩类为主,早第三纪以玄武岩类为主,玄武岩浆源于富集型地幔,即富集轻稀土和大离子亲石元素,但明显亏损Yb、Ni和Cr等元素。火山岩的Sr和Nd同位素初始比值结果表明白垩纪的火山岩来源于Ⅱ型富集地幔,而早第三纪火山岩来源于接近原始地幔的略富集型地幔。这可能由于早第三纪岩石圈大规模伸展减薄,致使上地幔深部的亏损型物质上涌参与岩浆活动,与富集型地幔混染的结果。  相似文献   
103.
试论碳酸盐岩上覆红土的形成模式及演化趋势   总被引:14,自引:1,他引:14  
符必昌  黄英 《地质科学》2003,38(1):128-136
据长期对岩溶及红土化作用等的研究成果,本文全面系统地分析了碳酸盐岩上覆红土的形成及演化规律,提出了一个新的碳酸盐岩上覆红土的形成模式,进而深入阐明了碳酸盐岩上覆红土的演化规律及其在现代气候条件下的演化趋势等,在解决岩溶及红土学术界存在的碳酸盐岩上覆红土的形成、碳酸盐岩与上覆红土之间的相互关系及其发展演化规律等一系列重大疑难问题上向前迈进了一步,对相关学科的发展将产生积极的推动作用.  相似文献   
104.
羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨   总被引:1,自引:0,他引:1  
羌塘超钾质火山岩为板块碰撞后的产物,地球化学特征表明,其同时具有板内火山岩和俯冲带岛弧火山岩的双重地球化学特性。化学组成上富含轻稀土和大离子亲石元素而亏损Cr、Ni等相容元素。在成因上受分离结晶作用和源区混合作用共同制约。源区为受古俯冲上地壳物质和下地幔上升流体交代混合的EMII型富集地幔端元,可能富含角闪石和金云母等矿物。  相似文献   
105.
The Interior Basin of Gabon, created during the break-up between South America and Africa, displays thick Neoproterozoic to Aptian p.p. fluvio-lacustrine deposits overlain by Aptian to Albian marine facies. Rock–Eval analyses from outcrop and drillhole samples show high content in organic matter (up to 25%) related to types I and II. These intervals are encountered within Permian, Neocomian–Barremian as well as Aptian siliciclastic succession. They constitute fairly good to excellent potential petroleum source rocks, which are most probably at the origin of oil indices recognized both in drillholes and in surface.  相似文献   
106.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   

107.
The analysis of modal and normative composition of sedimentary rocks is widely used for studying their sources and tectonic settings. The normative calculation of the mineral composition of rocks in this study is formulated as a linear programming problem and is solved by means of the simplex method. This enables both simultaneous and successive subtraction of a set of basic minerals from a rock sample represented by its chemical composition {SiO2...LOI}. Such an approach provides a more exact calculation of the contribution of basic minerals in the rock. This mathematical approach is used to study two representative sets of sandstones and fine-grained rocks from a Meso- to Neoproterozoic marginal basin of southeastern Siberia (Uchur–Maya region, Yakutia) and a Pennsylvanian-Lower Permian uplifted continental block in Colorado, USA. The calculated normative mineral compositions of the Siberian sandstones are consistent with the observed modal compositions. These sandstones vary from K- Feldspar rich arkoses at the base of the sequence (the Uchur Group, lower Riphean) to quartz arenites or lithic sandstones and wacke in transgressive successions of the middle-upper Riphean. Arkoses and quartz arenites are dominant in Meso- to Neoproterozoic Siberia. These samples represent craton interior uplifted basement and quartzose, recycled orogen provenance of a stable craton in Rodinia. There are higher but consistent discrepancies between the calculated and observed compositions for the Pennsylvanian to Lower-Permian arkoses and quartz arenites (Sangre de Cristo, Belden, and Maroon Formations). The differences between the predicted and observed mineralogy may be due to uncertainties in the modes in the matrix and cement of the sandstones. This normative program should supplement modal calculations and provide better genetic constructions, especially in case of matrix-rich sandstones.  相似文献   
108.
Establishing relative and absolute time frameworks for the sedimentary, magmatic, tectonic and gold mineralisation events in the Norseman-Wiluna Belt of the Archean Yilgarn Craton of Western Australia, has long been the main aim of research efforts. Recently published constraints on the timing of sedimentation and absolute granite ages have emphasized the shortcomings of the established rationale used for interpreting the timing of deformation events. In this paper the assumptions underlying this rationale are scrutinized, and it is shown that they are the source of significant misinterpretations. A revised time chart for the deformation events of the belt is established. The first shortening phase to affect the belt, D1, was preceded by an extensional event D1e and accompanied by a change from volcanic-dominated to plutonic-dominated magmatism at approximately 2685–2675 Ma. Later extension (D2e) controlled deposition of the ca 2655 Ma Kurrawang Sequence and was followed by D2, a major shortening event, which folded this sequence. D2 must therefore have started after 2655 Ma—at least 20 Ma later than previously thought and after the voluminous 2670–2655 Ma high-Ca granite intrusion. Younger transcurrent deformation, D3–D4, waned at around 2630 Ma, suggesting that the crustal shortening deformation cycle D2–D4 lasted approximately 20–30 Ma, contemporaneous with low-volume 2650–2630 Ma low-Ca granites and alkaline intrusions. Time constraints on gold deposits suggest a late mineralisation event between 2640–2630 Ma. Thus, D2–D4 deformation cycle and late felsic magmatism define a 20–30 Ma long tectonothermal event, which culminated with gold mineralisation. The finding that D2 folding took place after voluminous high-Ca granite intrusion led to research into the role of competent bodies during folding by means of numerical models. Results suggest that buoyancy-driven doming of pre-tectonic competent bodies trigger growth of antiforms, whereas non-buoyant, competent granite bodies trigger growth of synforms. The conspicuous presence of pre-folding granites in the cores of anticlines may be a result from active buoyancy doming during folding.  相似文献   
109.
110.
硅岩的Rb-Sr同位素组成特点及其地质意义   总被引:2,自引:0,他引:2  
王东安  陈瑞君 《地球学报》1997,18(Z1):108-110
通过对扬子地台和东昆仑山地区的不同时代、不同成因、成分上差异较大的硅岩Rb-Sr同位素组成的对比研究,探讨其物源和形成环境,利用所测Rb-Sr等时线年龄,有效的解决硅岩的地层年代,开创硅岩测年的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号