首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   124篇
  国内免费   326篇
测绘学   10篇
大气科学   12篇
地球物理   215篇
地质学   917篇
海洋学   14篇
天文学   67篇
综合类   32篇
自然地理   276篇
  2024年   9篇
  2023年   24篇
  2022年   63篇
  2021年   75篇
  2020年   114篇
  2019年   99篇
  2018年   104篇
  2017年   83篇
  2016年   56篇
  2015年   69篇
  2014年   50篇
  2013年   131篇
  2012年   57篇
  2011年   35篇
  2010年   44篇
  2009年   42篇
  2008年   60篇
  2007年   49篇
  2006年   42篇
  2005年   40篇
  2004年   54篇
  2003年   46篇
  2002年   31篇
  2001年   18篇
  2000年   14篇
  1999年   9篇
  1998年   37篇
  1997年   13篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   14篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1983年   2篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有1543条查询结果,搜索用时 15 毫秒
31.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   
32.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   
33.
The “Nares Strait problem” represents a debate about the existence and magnitude of left-lateral movements along the proposed Wegener Fault within this seaway. Study of Palaeogene Eurekan tectonics at its shorelines could shed light on the kinematics of this fault. Palaeogene (Late Paleocene to Early Eocene) sediments are exposed at the northeastern coast of Ellesmere Island in the Judge Daly Promontory. They are preserved as elongate SW–NE striking fault-bounded basins cutting folded Early Paleozoic strata. The structures of the Palaeogene exposures are characterized by broad open synclines cut and displaced by steeply dipping strike-slip faults. Their fold axes strike NE–SW at an acute angle to the border faults indicating left-lateral transpression. Weak deformation in the interior of the outliers contrasts with intense shearing and fracturing adjacent to border faults. The degree of deformation of the Palaeogene strata varies markedly between the northwestern and southeastern border faults with the first being more intense. Structural geometry, orientation of subordinate folds and faults, the kinematics of faults, and fault-slip data suggest a multiple stage structural evolution during the Palaeogene Eurekan deformation: (1) The fault pattern on Judge Daly Promontory is result of left-lateral strike-slip faulting starting in Mid to Late Paleocene times. The Palaeogene Judge Daly basin formed in transtensional segments by pull-apart mechanism. Transpression during progressive strike-slip shearing gave rise to open folding of the Palaeogene deposits. (2) The faults were reactivated during SE-directed thrust tectonics in Mid Eocene times (chron 21). A strike-slip component during thrusting on the reactivated faults depends on the steepness of the fault segments and on their obliquity to the regional stress axes.Strike-slip displacement was partitioned to a number of sub-parallel faults on-shore and off-shore. Hence, large-scale lateral movements in the sum of 80–100 km or more could have been accommodated by a set of faults, each with displacements in the order of 10–30 km. The Wegener Fault as discrete plate boundary in Nares Strait is replaced by a bundle of faults located mainly onshore on the Judge Daly Promontory.  相似文献   
34.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   
35.
Sung Won Kim   《Gondwana Research》2005,8(3):385-402
An understanding of the Okcheon Metamorphic Belt (OMB) in South Korea is central to unraveling the tectono-metamorphic evolution of East Asia. Amphibole-bearing rocks in the OMB occur as calcsilicate layers and lenses in psammitic rocks, in the psammitic rocks themselves, and in the mafic volcanic layers and intrusives. Most amphiboles fail to show 40Ar/39Ar plateau ages; those that do have ages ranging from 132 to 975 Ma. The disturbed age pattern and wide variation in 40Ar/39Ar ages can be related to metamorphic grade, retrograde chemical reactions, excess Ar and amphibole composition. The oldest age (975 Ma) can be interpreted either as an old igneous or metamorphic age predating sedimentation or a false age caused by excess Ar. The youngest age of 132 Ma and the disturbed age pattern found in amphiboles from rocks located close to Jurassic granitoids are the result of retrograde thermal metamorphic effects accompanying intrusion of the granitoids. Some medium- or coarse-grained amphiboles in the calcsilicates are aggregates of fine-grained crystals. As a result, they are heterogeneous and prove to be readily affected by excess Ar. A disturbed age pattern in amphiboles from the calcsilicates occurring in the high-grade metamorphic zone may also be the product of excess Ar. On the other hand, the disturbed pattern of amphiboles present in the calcsilicates from the low-grade metamorphic zone could arise from both excess Ar and mixed ages. However, amphiboles from psammitic rocks and some calcsilicates in the high-grade metamorphic zone and in intrusive metabasites display real plateau ages of 237 to 261 Ma. The temperature conditions in the high-grade metamorphic zone were higher than the argon closing temperature for amphibole, and the amphiboles in this zone give plateau ages only when they are homogeneous in composition, lack excess Ar, and have not been thermally affected by intrusion of the granitoids. The unmodified 40Ar/39Ar ages prove rather younger than the age of the Late Paleozoic metamorphic event of 280 to 300 Ma, but they are close to muscovite K-Ar ages of 263 to 277 Ma. These 40Ar/39Ar amphibole ages are interpreted as the time of cooling that followed the main regional, intermediate-P/T metamorphic climax. The results demonstrate that interpretation of 40Ar/39Ar amphibole ages in an area subjected to several metamorphic events can be accomplished only by undertaking a thorough tectono-metamorphic study, accompanied by detailed chemical analysis of the amphiboles.  相似文献   
36.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
37.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   
38.
In the northern Flinders Ranges, Neoproterozoic and Cambrian sedimentary rocks were deformed and variably metamorphosed during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across the northern Flinders Ranges show shortening of about 10–20%. Despite the presence of suitable evaporitic detachment horizons at the basement‐cover interface, the structural style is best interpreted to be thick‐skinned involving basement with only a minor proportion of the overall shortening accommodated along stratigraphically controlled detachments. Much of the contractional deformation was localised by the inversion of former extensional faults such as the Norwest and Paralana Faults, which both controlled the deposition of Neoproterozoic cover successions. As such, both faults represent major, long‐lived structures which effectively define the present boundaries of the northern Flinders Ranges with the Gawler Craton to the west and the Curnamona Craton to the east. The most intense deformation, which resulted in exhumation of the basement along the Paralana Fault to form the Mt Painter and Babbage Inliers, coincides with extremely high heat flows related to extraordinarily high heat‐production rates in the basement rocks. High heat flow in the northern Flinders Ranges suggests that the structural style not only reflects the pre‐Delamerian basin architecture but is also a consequence of the reactivation of thermally perturbed, weakened basement.  相似文献   
39.
The Ribeira Belt (Brazil) is a Neoproterozoic collisional-related feature that was located in a south-central position in West Gondwana. We present quantitative data on finite strain, flow vorticity and deformation temperatures for the Curitiba Terrane, a major segment of the southern Ribeira Belt. Six deformation phases (D1-D6) related with crustal thickening and exhumation were recognized. D1 and D2-related microstructures are preserved exclusively within porphyroblasts, in part grown during stages of high-pressure (∼9–12 kbar) isobaric heating after crustal thickening. D3 phase was active from peak metamorphism attained in contrasting crustal levels (810–400 °C), to the early stage of exhumation (500–400 °C), as indicated by petrological, microstructural and quartz c-axis fabric evidence. Kinematic vorticity results indicate that the SL3 mylonitic fabric resulted from a simple shear-dominated deformation related with westward thrusting. North-verging overturned D4 folds with E-W-trending subhorizontal axes derived from a pure shear-dominated deformation. Regional D5 open folds with subvertical axes and NNE-SSW-trending traces were produced by indentation tectonics. D6 phase comprises retrograde orogen-parallel transcurrent shear zones related with scape tectonics. Geochronological data indicate that D3-D6 phases occurred between 584 and 580 Ma, suggesting a fast exhumation rate of ∼8 mm/year for the deepest rocks from the southern Ribeira Belt.  相似文献   
40.
Structural, magnetic and gravity trends of the southern New England Orogen (SNEO) indicate four oroclinal structures, none conclusively confirmed paleomagnetically. Curved structures of the Tamworth Belt (TB)—a continental forearc exposed across six tectono-stratigraphic blocks with interlinked Carboniferous stratigraphies and extensive ignimbritic rocks known to retain primary magnetisations despite prevalent overprinting—are prospective to oroclinal testing through comparison of Carboniferous pole paths for individual blocks. Pole paths (a) have been established for the Rocky Creek and Werrie blocks (northwestern/western TB), (b) are described herein for the Rouchel Block (southwestern TB), and (c) are forthcoming for the Gresford and Myall blocks (southern/southeastern TB). The Rouchel path derives from detailed paleomagnetic, rock magnetic and magnetic fabric studies. Thermal, alternating field and liquid nitrogen demagnetisations show a low-temperature overprint, attributed to late Oligocene weathering, and high-temperature (HT) primary and overprint components in both magnetite and hematite carriers, showing slight, systematic, directional differences with hematite providing the better cleaned site poles. Seven primary mean-site poles of Tournaisian and mainly Visean age and three overprint poles show six positive fold tests, five at 95% or higher confidence levels. Two dispersed groupings of intermediate (IT) and HT overprint site poles of Permian and Permo-Triassic age are attributed to early and late phases in oroclinal evolution of the SNEO. HT and IT/HT overprint site poles of mid-Carboniferous age are attributed to Variscan Australia–Asia convergence. Individual pole paths for the Rocky Creek, Werrie and Rouchel blocks show no noticeable rotation between them, indicating primary curvature for the southwestern TB. Their integrated SNEO pole path establishes a reference frame for determining rotations of the southern and southeastern TB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号