首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   25篇
  国内免费   7篇
测绘学   5篇
大气科学   3篇
地球物理   26篇
地质学   118篇
海洋学   11篇
天文学   1篇
综合类   1篇
自然地理   12篇
  2022年   1篇
  2021年   11篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   7篇
  2011年   5篇
  2010年   14篇
  2009年   9篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
71.
Sheet flow hydrodynamics over a non-uniform sand bed channel   总被引:1,自引:0,他引:1  
The current study experimentally investigates the flow characteristics and temporal variations in the sheet flow profile of a non-uniform sand bed channel. Experiments were done to explore turbulent structures in the presence of a sheet flow layer with and without seepage. The turbulent events, such as stream wise velocity, Reynolds shear stresses, and turbulence intensities were found to be increasing and vertical velocity was found decreasing with a sheet layer. The presence of a sheet layer also effects the turbulent energy production and energy dissipation. All the turbulence parameters with and without a sheet layer have also been influenced by the presence of downward seepage. The rate of sheet flow movement is increased with seepage, owing to increased turbulence with seepage. The current study used wavelet analysis on temporally lagged spatial bed elevation profiles obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuation at different spatial scales. A spatial cross correlation analysis at multiple scales, based on the wavelet coefficients, has been done on these bed elevation datasets to observe the effect of downward seepage on the dynamic behavior of sheet flow at different length scales. It is found that seepage increases average bed celerity and also increases the celerity of sheet flow of similar length scales. This increase in the celerity has been hypothesized as the increase of sheet flow movement as well as the increase in turbulent parameters with seepage, which destabilizes the bed particles resulting in a disruption in the continuous propagation pattern of the sheet flow. The increase of sheet flow celerity with seepage is confirmed from the saturation level of the wavelet power spectra of the bed elevation series. The presence of seepage also affects the non-uniformity of collective sheet material.  相似文献   
72.
南极冰盖的物质平衡研究:进展与展望   总被引:2,自引:0,他引:2       下载免费PDF全文
南极冰盖物质平衡最新的研究进展表明,西南极洲表现出两种变化模式,西部在增厚,而北面在更快地减薄。西南极冰盖总体可能正在减薄,其物质损失的速率可能足以使海平面每年上升近0.2mm。东南极冰盖物质不平衡可能很小,甚至其符号还不能被确定。南极半岛正在经历着快速变化。目前还不能可靠地估算南极冰盖的物质平衡状态。同时,大型冰川的停滞,一些冰川流速加快,冰盖大范围加速减薄,冰架大面积的快速崩解和支流冰川的加速,以及着地线强烈的底部融化等显示出南极冰盖存在快速变化。南极冰盖物质平衡未来的重点研究领域是开展冰盖表面高程变化的监测与模拟,确定表面物质平衡及其在各冰流盆地的分布,着地线的冰流通量,冰架底部的融化,了解冰后期冰盖退缩的动力过程,以及开发、对比和改进与冰盖物质平衡模拟和预测相关的各种模型。  相似文献   
73.
Based on six consistent radiocarbon dates from the isolation basins Grødheimsvatnet and Kringlemyr, we estimate a minimum deglaciation age for southern Karmøy, an island in outer Boknafjorden (south‐west Norway), of around 18 000 calibrated years before present (18k cal a bp ). We use microscopic phytoplankton, macrofossils, lithostratigraphic evidence and X‐ray fluorescence data to identify the isolation contacts in the basins, and date them to 17.52–17.18k cal a bp in Grødheimsvatnet [15.57 m above present mean sea level (MSL)] and 16.19–15.80k cal a bp in Kringlemyr (11.99 m above MSL). Combining these data with previous studies, we construct a relative sea‐level (RSL) curve from 18k cal a bp until the present, which is ~3 ka longer than any previous RSL reconstruction from southern Norway. Following deglaciation, southern Karmøy has experienced a net emergence of around 16–19 m, although with significant RSL fluctuations. This includes two RSL minima well below present MSL around ~13.8 and ~10k cal a bp , and two maxima that culminated around 5–7 m above MSL during the Younger Dryas and early to mid‐Holocene, respectively. Considering eustatic sea level and modelled gravitational deformation of the geoid, we estimate a net postglacial isostatic uplift of ~120 m. © 2019 John Wiley & Sons, Ltd  相似文献   
74.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
75.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
76.
77.
Near-bed oscillatory flows with acceleration skewness are characteristic of steep and breaking waves in shallow water. In order to isolate the effects of acceleration skewness on sheet flow sand transport, new experiments are carried out in the Aberdeen Oscillatory Flow Tunnel. The experiments have produced a dataset of net transport rates for full-scale oscillatory flows with varying degrees of acceleration skewness and three sand sizes. The new data confirm previous research that net transport in acceleration-skewed flow is non-zero, is always in the direction of the largest acceleration and increases with increasing acceleration skewness. Large transport rates for the fine sand conditions suggest that phase lag effects play an important role in augmenting positive net transport. A comparison of the new experimental data with a number of practical sand transport formulations that incorporate acceleration skewness shows that none of the formulations performs well in predicting the measured net transport rates for both the fine and the coarser sands. The new experimental data can be used to further develop practical sand transport formulations to better account for acceleration skewness.  相似文献   
78.
A 1DV-RANS diffusion model is used to study sand transport processes in oscillatory flat-bed/sheet flow conditions. The central aim is the verification of the model with laboratory data and to identify processes controlling the magnitude and direction (‘onshore’/‘offshore’) of the net time-averaged sand transport. The model is verified with a large series of measured net sand transport rates, as collected in different wave tunnels for a range of wave-current conditions and grain sizes. Although not all sheet flow details are represented in the 1DV-model, it is shown that the model is able to give a correct representation of the observed trends in the data with respect to the influence of the velocity, wave period and grain diameter. Also detailed mean sediment flux profiles in the sheet flow layer are well reproduced by the model, including the direction change from ‘onshore’ to ‘offshore’ due to a difference in grain size from 0.34 mm (medium sand) to 0.13 mm (fine sand). A model sensitivity study with a selected series of net transport data shows that the stirring height of the suspended sediment εs/ws strongly controls the magnitude and direction of the net sediment transport. Inclusion of both hindered settling and density stratification appears to be necessary to correctly represent the sand fluxes for waves alone and for waves + a superimposed current. The best agreement with a large dataset of net transport measurements is obtained with the 1DV-RANS model in its original settings using a Prandtl–Schmidt number σρ = 0.5.  相似文献   
79.
The construction of sheet pile walls may involve either excavation of soils in front or backfilling of soils behind the wall. These construction procedures generate different loading conditions in the soil and therefore different wall behavior should also be expected. The conventional methods, which are based on limit equilibrium approach, commonly used in the design of anchored sheet pile walls do not consider the method of construction. However, continuum mechanics numerical methods, such as finite element method, make it possible to incorporate the construction method during the analyses and design of sheet pile walls. The effect of wall construction type for varying soil conditions and wall heights were investigated using finite element modeling and analysis. The influence of construction method on soil behavior, wall deformations, wall bending moments, and anchor forces were investigated. The study results indicate that walls constructed by backfill method yield significantly higher bending moments and wall deformations. This paper presents the results of the numerical parametric study performed and comparative analyses of the anchored sheet pile walls constructed by different construction methods.  相似文献   
80.
1:25万常德市幅自西向东跨武陵隆起和江汉—洞庭盆地,具复杂的第四纪隆-凹构造格局。以详细地表调查和大量第四系钻孔资料为基础,以第四纪构造活动、沉积作用以及现今地势高低和地貌形态特征为主要依据,对1∶25万常德市幅进行了构造-沉积地貌类型的划分与编图。构造-沉积地貌类型是以第四纪地质作用为依据对传统地貌类型和地貌单元所作的分解和细化。研究区共厘定出抬升剥蚀中低山(Ⅰ)、抬升剥蚀丘陵(Ⅱ)、沉积-抬蚀丘陵(Ⅲ)、沉积-抬蚀岗状平原(Ⅳ)、残坡积岗状平原(Ⅴ)、孤山(Ⅵ)、沉降沉积-抬蚀岗状平原(Ⅶ)、沉降沉积-抬升波状平原(Ⅷ)、稳定沉积低平原(Ⅸ)、沉降沉积低平原(Ⅹ)等10种构造-沉积地貌类型。详细的解析表明,不同构造-沉积地貌类型的地表高程、第四纪地壳升降特征、风化剥蚀和沉积作用等各具特征。构造-沉积地貌类型的划分及其地貌图的编制,不仅反映出地表地理环境暨地貌特征,同时提供了直观表达不同地区第四纪地层、构造特征及其反映的地质与环境演化过程的有效途径,有助于促进和深化江汉-洞庭盆地第四纪地质与环境研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号