首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   16篇
  国内免费   37篇
测绘学   1篇
大气科学   1篇
地球物理   13篇
地质学   140篇
海洋学   12篇
综合类   2篇
自然地理   1篇
  2023年   1篇
  2022年   2篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   10篇
  2013年   6篇
  2012年   16篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   11篇
  2006年   5篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
91.
阿尔泰哈巴河群的沉积时代及其构造背景   总被引:9,自引:5,他引:9  
北疆阿尔泰造山带的哈巴河群变质碎屑岩分布广泛,其沉积时代和构造环境对于认识中亚造山带的演化历史有重要意义。早期研究认为哈巴河群沉积于震旦纪—中奥陶世时期,形成于被动大陆边缘构造环境。而最近有学者根据中亚造山带的地质演化背景提出,阿尔泰形成于活动陆缘构造环境。对哈巴河群中碎屑锆石的年代学研究表明,不同岩性或变质程度不同的样品碎屑锆石主要类群具有相似的年龄分布特征,其~(206)Pb/~(238)U 年龄主要介于463~542Ma 之间。在这些样品中, 最年轻的碎屑锆石年龄均集中于470Ma 左右,代表了碎屑沉积的时代下限。而哈巴河群混合岩样品中碎屑锆石增生边形成于中泥盆世晚期(384±6Ma),与侵入该群的早古生代花岗岩的年龄十分接近,大致反映了哈巴河群碎屑岩沉积时代的上限,因此哈巴河群的沉积时代应在早泥盆世—中奥陶世之间。锆石的形态和内部结构特征显示哈巴河群的年轻碎屑锆石类群(463~542Ma)主要为岩浆锆石,其磨圆度较差,而且在比例上远高于前寒武纪碎屑锆石。上述特点与活动大陆边缘碎屑锆石类群分布特征完全一致,反映阿尔泰在中奥陶世至早泥盆世可能处于活动大陆边缘构造环境。  相似文献   
92.
Clastic dikes are formed either by passive deposition of clastic material into pre-existing fissures (depositional dikes), or by fracturing and injection of clastics during earthquakes (injection dikes). We proposed to use optically stimulated luminescence (OSL) dating to distinguish between the two modes of formation and hypothesized that (1) depositional dikes filled from above show OSL ages younger than the host rock; and (2) injection dikes filled from below show the same OSL ages as that of the host rock. We studied the mechanisms of clastic-dike formation and their ages within the seismically active Dead Sea basin, where hundreds of dikes crosscut the late Pleistocene (70–15 ka) lacustrine sediments of the Lisan Formation. Field observations and analysis of magnetic tensors show unequivocally that most of these dikes were emplaced by injection, inferred to be due to seismically triggered fluidization–liquefaction during earthquakes. Twenty-eight samples were collected from the Lisan source material and dikes that, based on field observations, are unmistakably either depositional dikes or injection dikes.

Quartz single aliquot OSL ages of the source Lisan layers are between 43 and 34 ka, and are typical for the Lisan Formation. The ages of both depositional and injection dikes are between 15 and 17 ka, younger than the Lisan host rock. Depositional dikes show a highly scattered distribution of single grain ages, suggesting several episodes of infill. Single grain ages of injection dikes are of latest Pleistocene to Holocene, and do not contain recently bleached grains that infiltrated from above. These results imply that the OSL signals were reset at the time of fluidization–liquefaction and buildup of fluid pressure within the injection dikes. If this resetting mechanism has a physical ground, then OSL dating is an important tool for constraining the ages of earthquake-induced injection dikes and recovering paleoseismic data from them.  相似文献   

93.
The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic–Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China.Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite–granodiorite-dominated, tonalite–granodiorite–granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated.Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at 1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.  相似文献   
94.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   
95.
郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据   总被引:3,自引:0,他引:3  
郯庐断裂带肥东段西韦地区和桃花源地区出露了大规模的北北东向韧性剪切带。桃花源地区韧性剪切带显示出2期构造变形的叠加。野外构造和显微构造分析皆指示为左行走滑韧性剪切带。糜棱岩中石英与长石的变形行为指示其变形温度分别为400~450℃和500℃。通过对这两处走滑剪切带内糜棱岩化花岗岩脉的锆石LA-ICP-MS定年,获得了3个样品的侵位年龄分别为(133.2±1.9)Ma,(131.3±2.0)Ma,(130.3±2.0)Ma。再结合已有的研究成果,认为在128~124Ma(早白垩世中期)郯庐断裂带发生过左行走滑活动。综合分析表明,郯庐断裂带在晚侏罗世和早白垩世中期分别经历了2期左行走滑活动,而期间和之后的早白垩世则处于伸展活动之中。伸展活动持续较长,控制发育了西侧的合肥盆地及断裂带内一系列岩浆活动;而区域挤压背景下出现的走滑活动则相对短暂。这些演化规律显示该断裂带在晚侏罗世—早白垩世呈现为交替式的走滑和伸展活动。新发现的早白垩世中期走滑活动,与太平洋区伊泽纳崎板块板块运动方向的调整相对应,是大洋板块运动方向短暂调整的构造响应。  相似文献   
96.
山东灵山岛北背来石剖面下白垩统莱阳组发育大量砂脉。根据砂脉与层面的关系,将其分为顺层砂脉和非顺层砂脉。前者主要发育在三角洲前缘黑色泥岩中,顶、底界面普遍参差不齐,常与软沉积变形构造共生。在分析砂脉特征的基础上,建立了非地震条件下顺层砂脉侵入的物理模型和公式,推导出液化砂层的深度与侵位深度和上覆沉积层厚度之间的关系,认为形成大型砂脉的液化砂层深度都很大。该实例对研究砂脉的成因、湖泊相关沉积及盆地构造运动具有重要意义。  相似文献   
97.
闽东南基性岩脉形成的构造应力场地质意义   总被引:5,自引:2,他引:3  
闽东南沿海地处长乐-南澳构造带内,发育晚中生代以来的基性岩脉(岩群),其几何形态和产状记录着区域应力场活动。通过对漳浦赤湖和东山海边基性岩脉的几何形态和产状的分析,推测长乐-南澳带在白垩纪为左旋韧性剪切带,古新世转变成左行脆性剪切带。长乐-南澳带的左旋走滑活动,是由古太平洋板块朝NW斜向俯冲引起的。晚白垩世以来,闽东南应力场性质为剪切与拉张相互变换,指示地壳拉张不是连续的,而是分期次;晚白垩世以来大洋板块属于低应力型俯冲,拉张是东南部主构造。  相似文献   
98.
Joya Honda (JH) is a Quaternary maar excavated in Mesozoic limestone. It is located in central Mexico and belongs to the Ventura volcanic field (VVF), which is composed by cinder cones and maars made of intraplate-type mafic alkalic rocks. Volcanoes in the region form  N20W lineaments, roughly parallel to a regional set of normal faults, but there is no obvious relation between these faults and vent distribution in the exposed geology around the maar. The volcanic rock volume is small in the VVF, and most volcanoes and their products are scattered in a region where outcrops are dominated by limestone.The near-vent tephra associated to the JH maar lies north of the crater. This relation suggests that the crater was formed by directed hydromagmatic explosions and may indicate an inclined volcanic conduit near the surface. The tephra stratigraphy suggests that the initial explosions were relatively dry and the amount of water increased during the maar forming eruption. Therefore, the existing model of the maar–diatreme formation may not be applicable to Joya Honda as it requires the formation of a cone of depression in the aquifer and deepening of the focii of the explosions as the crater and underlying diatreme grew. Thus, it is unlikely that there is a diatreme below Joya Honda.Aeromagnetic data shows a boundary between two regional magnetic domains near the elongated volcanic cluster of the VVF. The boundary is straight, with a distinct kink, from NE- to NW-trend, near JH. The limit between the domains is interpreted as fault contacts between mid-Tertiary volcanic rocks and marine Mesozoic sedimentary rocks. Hence, magma ascent in the area may have been facilitated by fractures near the surface.Magnetic and gravimetric ground surveys show that the anomalies associated with the maar are not centered in the crater, which could be consistent with an inclined volcanic conduit. A magnetic profile measured on exposed limestone across the volcanic lineament failed to show an anomaly such as that caused by a connecting dike between the volcanoes. Therefore, either the dike does not exist or it is so deep or so thin that it is beyond the limit of detection of the method and/or equipment used. Thus, the volcanic conduit immediately below Joya Honda can be reasonably modeled in the shape of a plug. A 2-D model of the crater anomaly is consistent with a roughly tabular deposit formed by fall-back pyroclasts and slump deposits near the surface. Based on this result we propose an alternative model for the formation of maar-type volcanoes excavated in hard rock, where there is no evidence of a gradual decrease of the water/magma ratio as the eruption advanced.  相似文献   
99.
The Mweelrea Group (Llanvirnian) in the South Mayo Inlier, western Ireland, consists mainly of coarse shallow-water sandstones with minor slates, cobble conglomerates, and ignimbrite tuffs. The Glenummera Formation at the base (up to 600 m), dominantly well-cleaved slates with some slump features, was deposited in a slope to deep marine shelf environment. A coarsening upward sequence at its top reflects the interaction of fluvial and marine processes, coarse clastic sediments having prograded from the southeast. The rest of the Mweelrea Group (2100 m in the northwest) is dominated by coarse trough cross-bedded sandstone with little evidence for channelling. Three lenticular marine slates (Glendavock, Uggool, and Glenconnelly Formations), up to 200 m thick, wedge out to the southeast. A humid alluvial fan-fan-delta model can explain many features of the Mweelrea Group. Fans built out to the northwest into a relatively small basin with negligible tides and moderate wave energy. Marginal sediments were reworked by waves, occasional storms, and a burrowing fauna.  相似文献   
100.
A lot of sand dikes are found in the Lower Cretaceous Laiyang Formation in northern Beilaishi section located in the Lingshan Island of Shandong Province. There are two types including bedding sand dikes and unbedding sand dikes based on their relationship with the bedding plane. The bedding sand dikes, which are often associated with soft sedimentary deformation, are mainly developed in the black mudstone of delta front, and their top and bottom interfaces are generally uneven. Based on the characteristics of sand dikes, the physical model and formula of bedding sand dikes under non-seismic condition are established. The relationship between the depth of liquefied sand layer, the emplacement depth and thickness of overlying sediment layer is deduced. It is considered that the depth of liquefied sand layer which forms large sand veins is very deep. This paper is of great significance in studying the origin of sand veins, lake related deposition and basin tectonic movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号