首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   11篇
  国内免费   19篇
大气科学   22篇
地球物理   14篇
地质学   37篇
海洋学   4篇
天文学   5篇
综合类   1篇
自然地理   2篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1980年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
51.
选用黑龙江省经过均一性检验的59个台站1961-2010年逐日最高、最低气温计算全省逐年热度日(HDD)、冷度日(CDD),分析其趋势及年代际和空间分布特征。结果表明:50 a来HDD总体呈显著的下降趋势,CDD整体表现为显著上升趋势。HDD基本上呈现由北向南递减趋势,CDD与HDD呈相反的变化特征,二者纬向分布明显。HDD与CDD均与对应时段平均气温具有较高的相关性,HDD与冷季平均气温呈反位相变化,CDD同暖季平均气温呈同位相变化。随着气候变暖,冷季用于供暖的能源将减少,暖季制冷所需的能源消耗将不断增加。  相似文献   
52.
The Late Triassic Central Patagonian Batholith is a key element in paleogeographic models of West Gondwana just before to the break-up of the supercontinent. The preexisting classification of units of this batholith was mainly based on isotopic and geochemical data. Here we report the results of field mapping and petrography, backed up by three new 40Ar/39Ar biotite ages, which reveal previously unnoticed relationships of the rocks in the batholith. Based on the new information we present a reorganization of units where the batholith is primarily formed by the Gastre and the Lipetrén superunits. The Gastre Superunit is the oldest magmatic suite and is composed of I-type granites which display evidence of felsic and mafic magma interaction. It is formed by 4 second-order units: 1) equigranular hornblende–biotite granodiorites, 2) porphyritic biotite–hornblende monzogranites, 3) equigranular biotitic monzogranites and 4) hornblende quartz-diorites. Emplacement depth of the Gastre Superunit is bracketed between 6 and 11 km (1.8–3 kbar), and the maximum recorded temperatures of emplacement are comprised between 660 and 800 °C. The recalculated Rb/Sr age is 222 ± 3 Ma and the porphyritic biotite–hornblende monzogranites yielded a 40Ar/39Ar age in biotite of 213 ± 5 Ma. On the other hand, the Lipetrén Superunit is made up by fine-grained biotitic monzo- and syenogranites that postdate magma hybridization processes and intrude all the other units. The recalculated Rb/Sr age for this suite is identical to a 40Ar/39Ar age in biotite extracted from one of its monzogranites (206.4 ± 5.3 and 206 ± 4 Ma, respectively). This and the observed textural features suggest very fast cooling related to a subvolcanic emplacement. An independent unit, the “Horqueta Granodiorite”, which has previously been considered as the record of a Jurassic intrusive stage in the Central Patagonian Batholith, gave a 40Ar/39Ar age in biotite of 214 ± 2 Ma. This and the reexamination of available isotopic data allow propose that this granodiorite unit is part of the Late Paleozoic intrusives in the region. The Late Triassic Central Patagonian Batholith is overlain by 190–185 Ma volcano-sedimentary rocks, suggesting that it was exposed sometime between the latest Triassic and earliest Jurassic times, roughly coeval with a major accretionary episode in the southwestern margin of Gondwana.  相似文献   
53.
The cooling and reheating histories of dim isolated neutron stars (DINs) are discussed. Energy dissipation due to dipole spindown with ordinary and magnetar fields, and due to torques from a fallback disk are considered as alternative sources of reheating which would set the temperature of the neutron star after the initial cooling era. Cooling or thermal ages are related to the numbers and formation rates of the DINs and therefore to their relations with other isolated neutron star populations. The possibility of energy dissipation at ages greater than about 106 yrs is a potentially important factor in determining the properties of the DIN population. Interaction with a fallback disk, higher multipole fields and activity of the neutron star are briefly discussed.   相似文献   
54.
According to the metallogenic theory by transmagmatic fluid(TMF).one magmalic intrusion is a channel of ore-bearing fluids,but not their source.Therefore,it is possible to use TMF’s ability for injection into and for escaping from the magmatic intrusion to evaluate its ore-forming potential.As the ore-bearing fluids cannot effectively inject into the magmatic intrusion when the magma fully crystallized, the cooling time and rates viscosity varied can be used to estimate the minimum critical thickness of the intrusion.One dimensional heat transfer model is used to determine the cooling time for three representative dikes of different composition(granite porphyry,quartz diorite and diabase) in the Shihu gold deposit.It also estimated the rates viscosity varied in these lime interval.We took the thickness of dike at the intersection of the cooling time—thickness curve and the rates viscosity varied versus thickness curve as the minimum critical thickness.For the ore-bearing fluids effectively injecting into the magma,the minimum critical thicknesses for the three representative dikes are 33.45 m for granite porphyry,8.22 m for quartz diorite and 1.02 m for diabase,indicating that ore-bearing dikes must be thicker than each value.These results are consistent with the occurrence of ore bodies,and thus they could be applied in practice.Based on the statistical relationship between the length and the width of dikes.these critical thicknesses are used to compute critical areas:0.0003—0.0016 km~2 for diabase. 0.014—0.068 km~2 for quartz diorite and 0.011—0.034 km~2 for granite porphyry.This implies that orebearing minor intrusions have varied areas corresponding to their composition.The numerical simulation has provided the theoretical threshold of exposed thickness and area of the ore-bearing intrusion.These values can be used to determine the ore-forming potentials of dikes.  相似文献   
55.
对天山北缘石场-玛纳斯、安集海河和四棵树河地区18个样品进行了磷灰石裂变径迹年龄测定,同时测定了中生界地层10件裂变径迹样品相应煤层的镜质体反射率。结果表明地层由老到新镜质体反射率逐渐增加,磷灰石裂变径迹中值年龄逐渐降低。石场-玛纳斯地区,下部三叠系煤层镜质体反射率 R_o 值较低,为O.56%,磷灰石裂变径迹中值年龄较大,为125.3±9.1Ma;八道湾组煤层 R_o 为0.53%~0.64%,磷灰石裂变径迹中值年龄介于81.3±4.7~87.8±5.9Ma;上部西山窑组煤层 R_o 最高,达到0.81%,磷灰石裂变径迹中年龄较低,为44.0±5.4~11.8±1.8Ma;相同层位,东部石场-玛纳斯一带 R_o比西部四棵树地区高,磷灰石裂变径迹年龄刚好相反。磷灰石裂变径迹模拟结果表明中生界三叠系、下侏罗统地层的埋藏深度相对较浅,上覆沉积持续的时间到晚侏罗世到早白垩世基本上已经结束,然后保持在基本不变的深度,直至中新世,不整合在三叠系之下的花岗岩的模拟结果也支持这样的认识。晚侏罗世—早白垩世的冷却降温事件可能是地温梯度变化和隆升作用的共同结果;中侏罗统地层埋藏增温过程持续时间较长,在玛纳斯地区直至渐新世末期。所有样品中磷灰石裂变径迹模拟都记录了10Ma 左右的快速冷却过程,近4~5km 的地壳表层物质被剥蚀,平均剥蚀速率400~500m/Ma。这一剥蚀过程应该与天山地区的快速隆升,以及向北的冲断推覆作用相对应。天山地区山前带的变形应不早于10Ma,这一认识与野外地质证据一致。  相似文献   
56.
We calculated statistical average of thermal data to speculate regional thermal structure of the forearc area of the Japanese Islands. The three thermal statistical averages show a difference of a high thermal regime in the western part of forearc inner zone and a low in the Kanto forearc outer zone. The Kanto zone marks 18 K km−1 for mean geothermal gradient, 44 mW m−2 for mean heat flow, while the western inner zone shows 27 K km−1 for mean geothermal gradient, 63 mW m−2 for mean heat flow. The geothermal gradients of the Nobi Plain and the Osaka Plain in the western inner zone are 29 and 36 K km−1, respectively, while the value of the Kanto Plain in the Kanto zone is 21 K km−1. Taking account of the effect of accumulation of sediments, we see the difference in the thermal regime between the plains and conclude that the difference is significant. Heat flux in the crust depends on the volume of granite rich in radioactive elements. There are few granitic rocks in the Kanto zone, while granitic rocks are dominant in the western inner zone. The heat flow of 20 mW m−2 is attributed to the granitic rocks of about 8 km in thickness. There are two oceanic plate subductions of the Pacific plate and the Philippine Sea plate under the Kanto zone, while only the Philippine Sea plate has been subducting under the western inner zone. The model simulation based on thermal and subduction model shows a heat flow ranging 50-60 mW m−2 in the southwest Japan forarc area and a low value of about 20 mW m−2 in the northeast Japan forearc area. The heat flux from the cooling oceanic lithosphere depends on the age of plate. The Shikoku Basin, a part of the Philippine Sea plate, off the western inner zone is 15-30 Ma, while the Pacific plate off the Kanto zone is 122-132 Ma. Theoretically, heat flux values of 15 and 50 Ma oceanic plates range 60-120 mW m−2 and those of 122-132 Ma could be about 10 mW m−2. If the heat flux contribution from the Philippine Sea plate under the Kanto zone is smaller than the plate under the western inner zone, there could be a thermal regime difference in order of several tens of mW m−2. Conclusively, the cause of the difference of heat flux could be the uneven granitic rocks distribution and/or the difference of heat flux between the two subducting plate.  相似文献   
57.
O. Nebel  K. Mezger   《Precambrian Research》2008,164(3-4):227-232
Dating low temperature events such as magmatic cooling or (hydro-)thermal surges in Archean and Proterozoic terranes is crucial in defining cratonal thermal stabilization after episodic continental growth during the Archean and Early Proterozoic. Rubidium–Sr chronology is potentially a powerful tool in this regard because of its low closure temperature, i.e., <400 °C in most minerals, but has until now been hampered by its relatively low precision compared to high-temperature chronometers. Consequently, Rb–Sr age investigations have so far failed to provide high-precision age constraints on the cooling of rocks older than 2 Ga. Here, it is demonstrated that internal Rb–Sr microchrons can yield important, high-precision age constraints on the cooling history of Archean intrusions. After careful mineral selection and chemical treatment, a Rb–Sr age of 2543.0 ± 4.4 Ma was obtained from the Archean Great Dyke, Zimbabwe Craton, in contrast to the intrusion age of 2575.8 ± 1 Ma, yielding an ambient average cooling of 5 ± 2 °C/Ma. The non-disturbed magmatic Rb–Sr cooling age of the Great Dyke marks the final stage of Zimbabwe craton stabilization and that the greater craton area did not experience any intensive later reheating event during metamorphic or tectonic events.  相似文献   
58.
ImODUCTIONInasedrinalseriesofPapersduringthelatel95osandl96()s,StonimlandANns(l958;l96()a,b)PresentedatheoreticalpictUreofthesoaree-drivendeepcirculaionintheoceanbasedongeOst-cd~cs.ItconsistsofaPole-wAninteriorflowresultingforavortexshetchingassociatedwithaslowuniformuPwellingthInllghouttheocean,andawestemboUndeqctirrentbalancingthemassbudget.Kawse(1987)formulatedalinear,tWo-layerbaxlinicmodeltostud}thedeeptroPicalcirculationdrivenbydeepwaterproduction.DistinctlydifferentfromtheStomm…  相似文献   
59.
气溶胶和水汽e型吸收对低层大气长波辐射冷却率的影响   总被引:3,自引:1,他引:2  
利用带模式方法计算了低层大气的长波冷却率。结果表明,在大气低层窗区e型吸收的冷却率小于非窗区的水汽冷却率,约占总冷却率的1/3;气溶胶的长波冷却率小于水汽的冷却率,对总冷却率的贡献约为30%;大气低层总冷却率的分布主要取决于水汽冷却率的分布。  相似文献   
60.
An integrated study of fission-track (FT) dating and structural geology revealed a complex tectono-thermal history preserved in basement rocks of central Madagascar since the amalgamation of Gondwana at the end of the Cambrian. A detailed study of five domains argues for several cooling steps with associated brittle deformations during the separation of Madagascar.Titanite and apatite FT ages range between 483 Ma and 266 Ma and between 460 Ma and 79 Ma, respectively. The titanite FT data indicate that the final cooling after the latest metamorphic overprint was terminated at c. 500 Ma (FC1). A 150 Myr phase of minor cooling (SC2), possibly related to a phase of tectonic quiescence and isostatic compensation, followed episode FC1. Between the Carboniferous and Early Jurassic, when an intracontinental rift developed between East Africa and Madagascar, complex brittle deformation effected the western margin of Madagascar and led to differential cooling of small basement blocks (FC3–FC5). During this period, ductile structural trends were reactivated at the western basement margin and in the centre of the island.A Late Cretaceous thermal event (T1) affected apatite FT data of samples from western–central and the eastern margin of Madagascar. These ages are related to the Madagascar–India/Seychelles break-up, whereby the thermal penetration along the eastern coast was restricted to the west by the Angavo shear zone (AGSZ). The Cretaceous evolution of the eastern margin was associated with minor erosion and was triggered by vertical displacements along brittle structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号