首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
地球物理   23篇
地质学   74篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   16篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   3篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有123条查询结果,搜索用时 78 毫秒
21.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   
22.
Detailed research of superficial deposits below the northern peak of Huascaran (Cordillera Blanca) provides new information on the limits of a paleo-avalanche originating from this mountain. Geomorphological mapping of the sediments identified glacial deposits, deposits from historical rock-debris avalanches and huge boulders from a paleo-avalanche. Schmidt Hammer rock-hardness tests were used to distinguish between the several generations of rock-debris avalanches, but largely failed to distinguish between the much older moraine and the paleo-avalanche sediments. Thus, only the field geomorphological mapping proved to be reliable for identifying the limits of the paleo-avalanche. The limits identified as granite boulders deposited over volcanic rocks were found to extend 30 m further up the opposite valley slope than previously had been mapped. This larger extent implies a greater volume and/or greater mobility for the prehistoric event.  相似文献   
23.
Several studies on earthquake occurrence and associated faulting have demonstrated that both phenomena have a scale-invariant behavior which can be analyzed by means of a set of non-integer dimensions(Dq) describing their fractal properties and the calculation of multi-fractal spectra.It is the case that the behavior of these spectra is asymptotic at the ends of the variation interval of q,which is a real number that enters into the definition of the partition function of the dataset.The difference between the extreme values,called multi-fractal spectrum slope,is used to investigate the heterogeneity of the spatial distribution of earthquakes and fault systems.In this paper we focus on the Betic Cordillera,southeastern Spain,which is commonly considered the contact between the Eurasian and African plates and has an important seismic activity in the context of the Iberian Peninsula.Some of the most conspicuous Iberian earthquakes,such as the 1829 mb6.3 Torrevieja and the 1884 mb6.1 Alhama de Granada earthquakes occurred in this mountain range and both reached intensity X.The present work implies a new analysis based on the slope of multi-fractal spectra and referred to the historical seismicity of the region,specifically b-value(frequency distribution of earthquakes respect to magnitude),epicentral location,seismic energy and faulting.On this basis we propose a seismotectonic zonation that is contrasted with the stress state and the geodynamical evolution of the Betic Cordillera.  相似文献   
24.
Analysis of teleseismic records obtained in two broadband seismic stations of three components located on the Andean region of Colombia is presented in this work. The two stations are located at the Western Cordillera (WC), station BOL, and at the Central Cordillera (CC), station PBLA. The analysis of seismograms was performed by inversion of the receiver functions (RF) in order to obtain the crustal velocity structure beneath the receivers. The receiver function is a spectral ratio obtained from teleseismic earthquakes recorded by broadband seismic stations, which allows the calculation of the velocity structure beneath the receiver by removing source effects in the horizontal components of the seismic traces. Data stacking was performed in order to improve signal to noise ratio and then the data was inverted by using two optimization algorithms: a genetic algorithm (GA), and a simulated annealing algorithm (SA). The present work calculates the receiver functions using teleseismic earthquakes at epicentral distances (Δ) ranging between 30° and 90° and recorded at the two stations within the years 2007 and 2009.Delay times between P and PS waves converted at the Moho boundary were used to constrain the velocity structure. The receiver functions at the stations were generated from seismic events within a broad range of back azimuth. Data from gravity and magnetism were also used during the geophysical survey. The depth of the Moho boundary was found to be at 40 km in the WC beneath station BOL and at 43 km in the CC beneath station PBLA. The upper crust, with a thickness of 5 km, is characterized by a shear wave velocity of about 3.0 km s−1; the shallower layers, at approximately 1.0 km, have shear wave velocities between 2.2 and 2.6 km s−1, which corresponds to sediments overlying the upper crust. These observations support the hypothesis of a thickness of the crust at the root of the mountain range to be between 32 and 50 km. The calculated receiver functions were compared with artificial ones generated from the inversion of 48000 models of horizontal layers for each station using a GA and an SA that allowed a satisfactory coverage of all the sample space in order to avoid non-unique solutions. Beneath station BOL a moderate low-velocity zone (LVZ) was found, which was caused by accretionary processes of the ophiolite complex in the WC.  相似文献   
25.
Abstract

During the Neogene (uppermost Aquitanian-Lower Burdigalian, Tortonian and Pliocene), three successive marine episodes took place in the present-day Malaga Basin. The first of these affected a wide area of the Belic Internal Zones and was brought to an abrupt conclusion by the westward displacement of these Zones, together with important horizontal movements associated with N70-100 direction strike-slip faults and the superposition of materials from the Campo de Gibraltar. The two other marine episodes were clearly controlled by vertical movements of NW-SE and NK-SW faults, caused by a clear E-W distension which, according to regional data, was associated with some compression in an approximately N-S direction. The area has also been affected, although to a lesser extent, by the uplift of the Betic Cordillera from the Upper Miocene to the present day.  相似文献   
26.
The Michilla mining district comprises one of the most important stratabound and breccia-style copper deposits of the Coastal Cordillera of northern Chile, hosted by the Middle Jurassic volcanic rocks of the La Negra Formation. 40Ar/39Ar analyses carried out on igneous and alteration minerals from volcanic and plutonic rocks in the district allow a chronological sequence of several magmatic and alteration events of the district to be established. The first event was the extrusion of a thick lava series of the La Negra Formation, dated at 159.9 ± 1.0 Ma (2σ) from the upper part of the series. A contemporaneous intrusion is dated at 159.6 ± 1.1 Ma, and later intrusive events are dated at 145.5 ± 2.8 and 137.4 ± 1.1 Ma, respectively. Analyzed alteration minerals such as adularia, sericite, and actinolite apparently give valid 40Ar/39Ar plateau and miniplateau ages. They indicate the occurrence of several alteration events at ca. 160–163, 154–157, 143–148, and 135–137 Ma. The first alteration event, being partly contemporaneous with volcanic and plutonic rocks, was probably produced in a high thermal gradient environment. The later events may be related either to a regional low-grade hydrothermal alteration/metamorphism process or to plutonic intrusions. The Cu mineralization of the Michilla district is robustly bracketed between 163.6 ± 1.9 and 137.4 ± 1.1 Ma, corresponding to dating of actinolite coexisting with early-stage chalcocite and a postmineralization barren dyke, respectively. More precisely, the association of small intrusives (a dated stock from the Michilla district) with Cu mineralization in the region strongly suggests that the main Michilla ore deposit is related to a magmatic/hydrothermal event that occurred between 157.4 ± 3.6 and 163.5 ± 1.9 Ma, contemporaneous or shortly after the extrusion of the volcanic sequence. This age is in agreement with the Re–Os age of 159 ± 16 Ma obtained from the mineralization itself (Tristá-Aguilera et al., Miner Depos, 41:99–105,2006).  相似文献   
27.
The Cordillera Darwin metamorphic complex is unique in the Andes in exposing kyanite–staurolite schist north of the Beagle Channel in southern Patagonia. Garnet in amphibolite facies pelitic schists from Bahía Pia has patchy textures whereby some grains consist of clear, grossular‐rich garnet with fine‐grained S1 inclusion trails truncated by regions of turbid spessartine–pyrope‐rich garnet with biotite, muscovite, plagioclase and quartz inclusions. Micron‐scale aqueous inclusions in turbid garnet are consistent with recrystallization facilitated by fluid ingress; S2 inclusion trails indicate this was broadly contemporary with the growth of kyanite and staurolite in the matrix. Pseudosection modelling in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) is used to infer a P–T path dominated by decompression from 12 to 9 kbar at T 620 °C, coupled with garnet mode decreasing from 5% to <1%. U–Th–Pb in situ dating of S2 monazite indicates that staurolite and kyanite growth and thus exhumation was underway before 72.6 ± 1.1 Ma. Contact aureoles developed adjacent to late granite intrusions include sillimanite‐bearing migmatites formed at P 6 kbar after 72 Ma. Metamorphism of southern Cordillera Darwin induced by continental underthrusting beneath the arc, related to closure of the Rocas Verdes back‐arc basin, was terminated by thrusting‐controlled exhumation, with the rocks at P 9 kbar by c. 73 Ma and 6 kbar by c. 70 Ma.  相似文献   
28.
A myriad of downstream communities and industries rely on streams fed by both groundwater discharge and glacier meltwater draining the Cordillera Blanca, Northern Peruvian Andes, which contains the highest density of glaciers in the tropics. During the dry season, approximately half the discharge in the region's proglacial streams comes from groundwater. However, because of the remote and difficult access to the region, there are few field methods that are effective at the reach scale to identify the spatial distribution of groundwater discharge. An energy balance model, Rhodamine WT dye tracing, and high‐definition kite‐borne imagery were used to determine gross and net groundwater inputs to a 4‐km reach of the Quilcay River in Huascaran National Park, Peru. The HFLUX computer programme ( http://hydrology.syr.edu/hflux.html ) was used to simulate the Quilcay River's energy balance using stream temperature observations, meteorological measurements, and kite‐borne areal photography. Inference from the model indicates 29% of stream discharge at the reach outlet was contributed by groundwater discharge over the study section. Rhodamine WT dye tracing results, coupled with the energy balance, show that approximately 49% of stream water is exchanged (no net gain) with the subsurface as gross gains and losses. The results suggest that gross gains from groundwater are largest in a moraine subreach but because of large gross losses, net gains are larger in the meadow subreaches. These insights into pathways of groundwater–surface water interaction can be applied to improve hydrological modelling in proglacial catchments throughout South America. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
29.
Gneiss domes are commonly cored by quartzofeldspathic rocks that provide little information about the pressure–temperature–fluid history of the domes. Three northern Cordilleran migmatite domes (Thor‐Odin and Valhalla/Passmore, British Columbia, Canada; Okanogan, Washington, USA), however, contain Mg–Al‐rich orthoamphibole‐cordierite gneiss as layers and lenses that record metamorphic conditions and pressure–temperature (PT) path information not preserved in the host migmatite. These Mg–Al‐rich rocks are therefore a valuable archive of metamorphic conditions during dome evolution, although refractory rocks such as these commonly contain reaction textures that may complicate the calculation of metamorphic conditions. In the Okanogan dome, Mg–Al‐rich layers are part of the Tunk Creek unit, which occurs at the periphery of an underlying migmatite domain. Bulk compositional layers (mm‐ to m‐scale) consist of gedrite‐dominated, hornblende‐dominated and biotite‐bearing layers that contain variable amounts of gedrite, hornblende, anorthite, cordierite, spinel, sapphirine, corundum, kyanite, biotite and/or staurolite. The presence of different compositional layers (some with reaction textures, some without) allows systematic analysis of metamorphic history by a combined petrographic and phase equilibrium analysis. Gedrite‐dominated layers containing relict kyanite preserve evidence of the highest‐P conditions; symplectitic and coronal reaction textures around kyanite indicate decompression at high temperature. Gedrite‐dominated layers lacking these reaction textures contain layers of sapphirine and spinel in apparent textural equilibrium and record a later high‐T–low‐P part of the path. Phase equilibria (pseudosection) analysis for layers that lack reaction textures indicates metamorphic conditions of 720–750 °C at a range of pressures (>8 to <4 kbar) following decompression. Elevated crustal temperatures and concordant structural fabrics in the Tunk Creek unit and underlying migmatite domain suggest that the calculated PT conditions recorded in Tunk Creek rocks were coeval with anatexis, extension, and dome formation in Palaeocene–Eocene time. In contrast to orthoamphibole‐cordierite gneiss in the other Cordilleran domes, the Tunk Creek unit occurs as a discontinuous km‐scale layer rather than as smaller (m‐scale) pods, is more calcic, and lacks garnet. In addition, kyanite did not transform to sillimanite, and spinel commonly occurs as a blocky matrix phase in addition to vermicules in symplectite. These differences, along with the compositional layering, allow an analysis of bulk composition v. tectonic (PT path) controls on mineral assemblages and textures. Pseudosection modelling of different layers in the Tunk Creek unit provides a basis for understanding the metamorphic history of these texturally complex, refractory rocks and their host gneiss domes, and other such rocks in similar tectonic settings.  相似文献   
30.
Comparisons of palaeo‐equilibrium line altitudes between the Western and Eastern Cordilleras in the Central Andes are commonly based on the assumption that the tall outermost moraines visible in remotely sensed images of the Western Cordillera date to the Last Glacial Maximum (LGM). However, field investigation and geomorphic mapping at Nevado Sajama, Bolivia, indicates the tall moraines are relic features with shorter moraines overlying and in some cases extending beyond them. 36Cl exposure ages from the shorter moraines suggest that they date to Lateglacial times ca. 16.9–10.2 ka. Although Lateglacial deposits have been found throughout the Central Andes, the extent of these deposits relative to LGM deposits varies both between the Western and Eastern Cordilleras and north‐to‐south along the Western Cordillera. In the Western Cordillera in the zone of easterly winds, the Lateglacial appears to be the most extensive glacial advance of the last glacial cycle. Geomorphic evidence also suggests that some Lateglacial moraines were deposited by cold‐based ice, a previously unreported finding in the tropical Andes. Retreat from other glacial features occurred at about 7.0–4.4 ka and 4.7–3.3 ka. These are the first directly dated Holocene glacial deposits in the Western Cordillera of Bolivia, and their presence suggests that the mid Holocene may not have been as warm and dry as previously thought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号