首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   20篇
  国内免费   14篇
测绘学   3篇
大气科学   1篇
地球物理   29篇
地质学   86篇
海洋学   1篇
天文学   9篇
综合类   8篇
自然地理   23篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   9篇
  2018年   6篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   11篇
  2008年   7篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   9篇
  2003年   3篇
  2002年   2篇
  2001年   9篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有160条查询结果,搜索用时 250 毫秒
11.
12.
The Sandhills Moraine is a Late Wisconsinan lateral moraine complex on southwest Banks Island. The occurrence of ice-ablation landforms, ground ice slumps, kettle lakes and catastrophic lake drainage in winter suggests the presence of substantial bodies of massive ground ice. The distinctive hummocky topography of the Sandhills Moraine is thought to reflect partial melt-out of this ice. Stratigraphic observations indicate that the ice is overlain irregularly and unconformably by glacigenic sediments, notably pebbly clay (till) and/or sandy gravels (outwash), while the ice itself possesses numerous and variable mineral inclusions, faults and foliations. Petrofabric analyses indicate a strongly preferred orientation to the ice crystals. It is suggested that these characteristics are best explained if the ground ice is interpreted as relict glacier ice.  相似文献   
13.
Glacial surges in Svalbard are protracted and characterized by individual dynamic evolution, in contrast to many other areas, which calls for a subdivision of the classic two‐phased surge cycle. A dominating part of the ice masses seem to have a surge potential and this represents a considerable challenge for palaeoclimatic studies. Glaciological and geological models therefore need to be coupled. The issue is discussed with Fridtjovbreen glacier as an example. This ice mass is one of few glaciers studied throughout a surge cycle. It was active for 12 years (1991–2002) and represents the most protracted surge documented. The maximum advance rate was 4.2 m day?1, its maximum extent was reached after seven years, its run‐out distance was 4 km, and the relocated ice filled 5 km2 of the fjord. Intense subglacial thrusting occurred during various stages, including part of the ice‐front retreat, as shown by sub‐bottom profiling data from 2002. A six‐stage model is presented and processes are discussed with emphasis on the ice‐front retreat with transition to the quiescent phase. Although the surge mechanism itself is unrelated to climate, climatic conditions obviously play a major role in the course of a surge. During the surge, the ice mass made a dramatic impression in the landscape, but 10 years after the maximum extent, there is little onshore evidence of the event.  相似文献   
14.
Since the 20th century, numerous Quaternary moraine dating methods have emerged, including lichenometric, moraine 14C, quartz sand thermoluminescence (TL), electron spin resonance (ESR), optically stimulated luminescence (OSL) and 10Be, 26A1, 36C1, 3H, 21Ne nuclide dating methods. These dating methods are widely applied to determine moraine ages and have provided a large dataset. Unfortunately each method has its defects. In this paper, we will review these various dating methods and provide some comments.  相似文献   
15.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
16.
The belated realisation that ribbed (Rogen) moraines form such an integral part of Irish geomorphology, and the piecemeal approach to previous drumlin mapping, is probably responsible for the highly contrasting views of palaeoflow patterns of the Irish Ice Sheet. Using a high resolution (25 m) digital elevation model we present morphological maps of a large part (100 × 100 km) of the so‐called ‘Drumlin Belt’ of north central Ireland. The landforms comprise mostly ribbed moraine much larger than found elsewhere (up to 16 km in length), which in places are superimposed on each other. Contrary to most prior assessments we find the bedform record to contain numerous and overlapping episodes of bed formation (ribbed moraine, drumlins and crag‐and‐tails) that provide a palimpsest record of changing flow geometries. These demonstrate an ice sheet with a centre of mass and flow geometry that changed during growth and decay. Using distinctive flow patterns and relative age relationships between them we reconstruct ice sheet evolution into four phases during a single glacial cycle. In phase 1 (early in the glacial cycle), Scottish and local ice coalesced to form a northeast‐centred Irish Ice Sheet. As it grew its centre of mass migrated southwards, culminating in a major N–S divide positioned down the east of Ireland (phase 2, ca. Last Glacial Maximum). During retreat, the centre of mass migrated at least 120 km northwards and became established in northwest Ireland and at this point a dramatic bedforming event produced one of the world's largest and most contiguous ribbed moraine fields (phase 3). Final deglaciation is thought to be by fragmentation into many topographically controlled minor ice‐caps (phase 4). Rather than any dramatic or unexpected behaviour, the reconstructed phases indicate a relatively predictable pattern of ice sheet growth and decay with changes in centres of mass, and does not require major readvances or ice‐stream events. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
17.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
18.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   
19.
During two lunations, telescopic imaging of the near side of the Moon was performed at the Maidanak mountain observatory (Uzbekistan) with the use of digital cameras based on CMOS detectors. In different ranges of phase angles, the slope of the phase function of the lunar surface was mapped at a wavelength of 0.52 μm with the method of phase ratios. It has been shown that when the phase angle is gradually decreasing, the correlation between the phase-function slope and the albedo first disappears, and then even changes its sign at small phase angles.  相似文献   
20.
细粒含量对冰碛土抗剪强度影响的实验研究   总被引:1,自引:1,他引:0  
为研究细粒组颗粒在浸水/降雨条件下产生迁移对冰碛土抗剪强度的影响,从西藏林芝市帕隆藏布嘎隆寺沟流域内采取冰碛土样品,进行7种不同细粒(粒径小于2 mm)含量情况下的冰碛土比重和相对密度的测试,开展了不同围压下的大型饱和固结不排水三轴(CU)实验。结果表明:(1)细粒含量对干密度的影响较小,不同细粒含量的冰碛土孔隙比大致相同,细颗粒对孔隙具有改造作用,不同细粒含量会引起孔隙结构的差异,从而导致冰碛土的结构差异,最终导致抗剪强度的不同;(2)细颗粒迁移导致冰碛堤坡脚和内部一定深度细粒含量较高,达到一定的量值时,抗剪强度明显降低,冰碛堤容易发生剪切破坏;(3)细粒含量对抗剪强度参数的变化具有重要影响,从中还可以反映出冰碛土结构控制的变化:粗颗粒控制→粗细颗粒共同控制→细颗粒控制。研究结果对于评价冰碛堤的稳定性具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号