首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  国内免费   6篇
地球物理   6篇
地质学   36篇
天文学   2篇
自然地理   2篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
31.
The Walhalla-Woods Point Goldfield in southeast Australia is characterised by large gold deposits associated with a Late Devonian dyke swarm. The setting of this goldfield is unique because unlike the major gold deposits in Victoria, it occurs close to the eastern margin of the Western Lachlan Orogen, and highlights the disparities between the evolving phases of orogenic gold mineralisation in the Western Lachlan Orogen, and the contrasts between sediment hosted, dyke-associated and dyke-hosted gold mineralisation. This study integrates existing and new data from renewed mapping of the geology and geochemistry of three gold deposits near the township of Walhalla, in the historically important yet under-explored and under-researched Walhalla-Woods Point Goldfield. The ten highest yielding deposits within the goldfield are either hosted within, or adjacent to, intrusions of the Woods Point Dyke Swarm. This is due to the greater chemical reactivity of the calc-alkaline dykes, and the greater rheological contrast between the dykes and surrounding low-grade metasedimentary units, which allowed for the formation of dyke-hosted quartz breccia veins that are consistently favourable sites for gold mineralisation in the Walhalla Goldfield. This is in contrast to historical production, which concentrated on visible gold within the shear zone-hosted laminated quartz veins. Gold and As assay results have highlighted the increased levels of invisible gold disseminated along dyke margins in proximity to shear zones and quartz reefs. The high-yielding gold deposits hosted wholly by the dyke intrusions of the Woods Point Dyke Swarm are orogenic gold deposits, as they are not associated with elevated levels of Bi, W, As, Mb, Te and Sb, typical of intrusion-related gold deposits.  相似文献   
32.
大岩墙超铁镁质岩层上部主要有三个硫化物带,铂族元素(PGE)主要分布在这些矿带中,尤其富集在硫化物带的底部。下部两个矿带属星散硫化物成矿,二者距离较远;上部矿带铂族元素品位较高,分布在十分薄的岩层中。目前对层状硫化物矿床形成的模式尚未进行足够的研究。初步认为下部两个矿带是硫化物从硅酸盐岩浆中经连续的结晶分凝作用形成;上部矿带是由于岩浆房底部比较原始的岩浆与顶部伴生浆液混合形成。  相似文献   
33.
Since most volcanic eruptions are fed by dykes, any assessment of volcanic hazards in an area must include an evaluation of the probability of injected dykes either reaching the surface or becoming arrested. Composite volcanoes are normally composed of alternating stiff (high Young's modulus) and soft (low Young's modulus) layers. Numerical models indicate that during unrest periods with magma-chamber inflation, the local stresses in composite volcanoes commonly prevent dyke-fed eruptions: while the stresses in the stiff layers may favour dyke propagation and seismogenic faulting, the local stresses in the soft layer remain seismically quiet and favour dyke arrest. Geodetic and field studies also indicate that most dykes never reach the surface, and that only a small fraction of the magma volume injected from a chamber erupts at the surface. I propose that for a dyke-fed eruption to occur, all the layers along the potential pathway of the dyke must have local stresses that favour magma-driven extension-fracture propagation. Thus, the stress field along the pathway must be homogenised. To cite this article: A. Gudmundsson, C. R. Geoscience 337 (2005).  相似文献   
34.
O. Nebel  K. Mezger   《Precambrian Research》2008,164(3-4):227-232
Dating low temperature events such as magmatic cooling or (hydro-)thermal surges in Archean and Proterozoic terranes is crucial in defining cratonal thermal stabilization after episodic continental growth during the Archean and Early Proterozoic. Rubidium–Sr chronology is potentially a powerful tool in this regard because of its low closure temperature, i.e., <400 °C in most minerals, but has until now been hampered by its relatively low precision compared to high-temperature chronometers. Consequently, Rb–Sr age investigations have so far failed to provide high-precision age constraints on the cooling of rocks older than 2 Ga. Here, it is demonstrated that internal Rb–Sr microchrons can yield important, high-precision age constraints on the cooling history of Archean intrusions. After careful mineral selection and chemical treatment, a Rb–Sr age of 2543.0 ± 4.4 Ma was obtained from the Archean Great Dyke, Zimbabwe Craton, in contrast to the intrusion age of 2575.8 ± 1 Ma, yielding an ambient average cooling of 5 ± 2 °C/Ma. The non-disturbed magmatic Rb–Sr cooling age of the Great Dyke marks the final stage of Zimbabwe craton stabilization and that the greater craton area did not experience any intensive later reheating event during metamorphic or tectonic events.  相似文献   
35.
Dykes are an essential element in building oceanic crust, most prominent in sheeted dyke complexes in the upper crust. Since dykes alter the magnitude and orientation of the local stress field, they cannot be treated as passive infillings of extensional fractures.We use a quasi-static, iterative 2-D boundary element method allowing for a wholesale movement of fluid-filled fractures. Effects of stress and pressure gradients, buoyancy and enclosed fluid mass are considered. The implications of the dyke-induced stress field are analysed combining the simulation of fracture propagation with computation of dyke interaction. Dyke interaction occurs by the adaptation of ascending dykes to the stress field caused by previous fractures arrested in the crust and leads to focussing and crossing of dykes. Examples for applications are introduced, concerning e.g. the generation of a magma chamber and the formation of the sheeted dyke complex. Our main results are that the interaction between dykes can be considerable and that the most important controlling factor is stress. The interaction is small when the horizontal tensional stress is large compared to the pressure in the dyke head. Otherwise, dykes tend to attract each other and to form centres of high dyke density or sill layers.  相似文献   
36.
The only Iberian lower Jurassic paleomagnetic pole come from the “Central Atlantic Magmatic Province”-related Messejana Plasencia dyke, but the age and origin of its remanence have been a matter of discussion. With the aim of solving this uncertainty, and to go further into a better understanding of its emplacement and other possible tectonic features, a systematic paleomagnetic investigation of 40 sites (625 specimens) distributed all along the 530 km of the Messejana Plasencia dyke has been carried out. Rock magnetic experiments indicate PSD low Ti-titanomagnetite and magnetite as the minerals carrying the NRM. The samples were mostly thermally demagnetized. Most sites exhibit a characteristic remanent component of normal polarity with the exception of two sites, where samples with reversed polarities have been observed. The paleomagnetic pole derived from a total of 35 valid sites is representative of the whole structure of the dyke, and statistically well defined, with values of PLa = 70.4°N, PLo = 237.6°E, K = 47.9 and A95 = 3.5°. Paleomagnetic data indicates that: (i) there is no evidence of a Cretaceous remagnetization in the dyke, as it was suggested; (ii) most of the dyke had a brief emplacement time; furthermore, two dyke intrusion events separated in time from it by at least 10,000 y have been detected; (iii) the high grouping of the VGPs directions suggests no important tectonic perturbations of the whole structure of the dyke since its intrusion time; (iv) the pole derived from this study is a good quality lower Jurassic paleopole for the Iberian plate; and (v) the Messejana Plasencia dyke paleopole for the Iberian plate is also in agreement with quality-selected European and North American lower Jurassic paleopoles and the magnetic anomalies data sets that are available for rotate them to Iberia.  相似文献   
37.
Anisotropy of magnetic susceptibility(AMS)studies were carried out on a precisely dated(2216.0±0.9 Ma),450 km long N-S striking dyke in the Dharwar Craton,to determine the magma flow direction along the dyke length.In order to use the imbrication of the magnetic foliation,forty eight samples were collected from 13 locations along the length of the dyke.Magnetogranulometry studies show that AMS fabric is dominated by medium grained interstitial Ti-poor multidomain magnetite.The corrected anisotropy degree(P_j)of the samples was found to be low to moderate,between 1.007 and 1.072,which indicates primary magnetic fabric.The magnetic ellipsoid is either triaxial,prolate or oblate and clearly defines normal,intermediate and inverse magnetic fabrics related to magma flow during the dyke emplacement.The maximum susceptibility axes(K_(max))of the AMS tensor of the dyke is predominantly inclined at low angles(30°),with no systematic variation in depth along the N-S profile,indicating sub-horizontal flow even at mid crustal levels which could probably be governed by location of the focal region of the magma source(mantle plume?),flow dynamics together with the compressive stresses exerted by the overlying crust.  相似文献   
38.
《地学前缘(英文版)》2020,11(6):2271-2286
In this study we present new mineral chemistry, whole-rock geochemical and zircon U–Pb geochronological data for 12 metamafic dykes in the mantle sequence of the Sangsang ophiolite in South Tibet (China). Modal analyses of these dykes gave averages of ~40%–65% plagioclase and ~35%–60% amphibole and small amounts of (igneous) clinopyroxene, epidote and opaque minerals. This mineral assemblage resembles that of typical orthoamphibolites. Nevertheless, due to the absence of foliation the investigated rocks are described as metamafic lithologies. These rocks have primitive mantle (PM)-normalized multi-element patterns with negative Nb and Ta anomalies as well as weak, negative Ti anomalies. In addition, they have initial 87Sr/86Sr ratios [(87Sr/86Sr)i] of 0.702844–0.703581, initial 143Nd/144Nd ratios [(143Nd/144Nd)i] of 0.512891–0.512959 and high εNd(t) values (+7.9 to +9.3). Uranium-Pb ages of magmatic zircons separated from the investigated metamafic dykes indicate that the parental melts of their protoliths intruded the Sangsang mantle at ~119.0–118.5 ​Ma.The metamorphic mineral assemblages recognized in the investigated dykes are suggestive of a retrograde metamorphic process, from (epidote-)amphibolite facies (~470–610 ​°C, ~1.9–4.3 ​kbar) and to prehnite-pumpellyite facies (≤280 ​°C, ≤ 3 ​kbar), active within a rift-produced oceanic lithosphere. Microtextural and geochemical data suggest that the protoliths of the dykes were most likely massive gabbros. Compositional data show that the parental magmas of the gabbroic protoliths were generated by melting of a depleted mantle (DM) source that had been weakly modified by fluids emanating from a subducted oceanic lithospheric slab. The age of the gabbroic protoliths is slightly younger than the existing ages for ophiolites from the central Yarlung-Zangbo Suture Zone (YZSZ) in the literature (~129–123 ​Ma). We, therefore, suggest that the gabbroic protoliths of the Sangsang metamafic dykes were formed in an incipient forearc setting during Neo-Tethyan subduction re-initiation (Aptian). Our tectonomagmatic model provides insights into the igneous accretion and post-solidification evolution of the oceanic lithosphere in South Tibet.  相似文献   
39.

The Hohonu Dyke Swarm and French Creek Granite represent contemporaneous and cogenetic alkaline magmatism generated during crustal extension in the Western Province of New Zealand. The age of 82 Ma for French Creek Granite coincides with the oldest oceanic crust in the Tasman Sea and suggests emplacement during the separation of New Zealand and Australia. The French Creek Granite is a composite A‐type granitoid, dominated by a subsolvus biotite syenogranite with high silica, low CaO, MgO, Cr, Ni, V and Sr and elevated high‐field‐strength elements (Zr, Nb, Ga, Y). Subordinate varieties of French Creek Granite include a hypersolvus alkali amphibole monzogranite and a quartz‐alkali feldspar syenite. Spatially associated rhyolitic dykes are considered to represent hypabyssal equivalents of French Creek Granite. The Hohonu Dyke Swarm represents mafic magmatism which preceded, overlapped with, and followed emplacement of French Creek Granite. Lamprophyric and doleritic varieties dominate the swarm, with rare phonolite dykes also present. Geochemical compositions of French Creek Granite indicate it is an A1‐subtype granitoid and suggest derivation by fractionation of a mantle‐derived melt with oceanic island basalt ‐ like characteristics. The hypothesis that the French Creek Granite represents fractionation of a Hohonu Dyke Swarm composition, or a mantle melt derived from the same source, is tested. Major‐ and trace‐element data are compatible with derivation of the French Creek Granite by fractionation of amphibole, clinopyroxene and plagioclase from mafic magmas, followed by fractionation of alkali and plagioclase feldspar at more felsic compositions. Although some variants of the French Creek Granite have Sr and Nd isotopic compositions overlapping those of the Hohonu Dyke Swarm, most of the French Creek Granite is more radiogenic than the Hohonu Dyke Swarm, indicating the involvement of a radiogenic crustal component. Assimilation‐fractional crystallisation modelling suggests isotopic compositions of French Creek Granite are consistent with extreme fractionation of Hohonu Dyke Swarm magmas with minor assimilation of the Greenland Group metasediments.  相似文献   
40.
J. P. Callot  X. Guichet   《Tectonophysics》2003,366(3-4):207-222
We develop two simple models for simulating the combination of magnetic sub-fabrics related to magma flow in dykes. The basic assumptions are (i) the petrofabric is representative of the flow fabric, and (ii) the petrofabric is composed of S/C-type structures related to flow. The first model consists of summing the magnetic tensors of two identical sub-fabrics, differing solely by their relative rotation. This model accounts for the possible change of the macroscopic magnetic lineation from a flow-related fabric to a lineation situated at the geometric intersection between the two sub-fabrics. Such a result is obtained in the case of oblate to highly oblate sub-fabric ellipsoids. The second model integrates the effect of very oblate grains of variable orientations into calculating the shape controlled magnetic tensor of each sub-fabric, and emphasizes the possible under-estimation of fabric superposition due to microscopic disordering. The magma fluxes along the East Greenland volcanic margin are illustrated by the flow pattern within the major dyke swarm. The magmatic flow vectors inferred from the imbrication of magnetic foliation at the dyke margins are primarily horizontal. The classic use of magnetic lineation can lead to contradictory results, giving flow vectors perpendicular to the flow directions. The magnetic lineation is situated close to the zone axis of magnetic foliation planes over a wide range of scales throughout the dyke swarm, suggesting that the contradiction may arise from the association of several textural domains at the sample scale. Forward modelling of macroscopic magnetic fabrics using the first model yields good agreement with the measured magnetic fabric of the East Greenland dykes. Our results, which are applicable to strained sedimentary rocks, highlight the possible misuse of the magnetic lineation due to combination of magnetic textures. The exchange between a microscopic lineation, i.e. mineralogical lineation, and a macroscopic lineation, i.e. intersection lineation, is particularly expected for dykes that generally bear oblate magnetic textures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号