首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   11篇
海洋学   3篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  2000年   1篇
  1991年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
The results of a numerical study on the influence of a number of structural design parameters on the fundamental frequency of reinforced-soil retaining wall models are presented and discussed. The design parameters in the study include the wall height, backfill width, reinforcement stiffness, reinforcement length, backfill friction angle and toe restraint condition. The intensity of ground motion, characterized by peak ground acceleration, is also included in the study as an additional parameter. The study shows that the fundamental frequency of reinforced-soil wall models with sufficiently wide backfill subjected to moderately strong vibrations can be estimated with reasonable accuracy from a few available formulae based on linear elastic wave theory using the shear wave speed in the backfill and the wall height. Numerical analyses showed no significant influence of the reinforcement stiffness, reinforcement length or toe restraint condition on the fundamental frequency of wall models. The strength of the granular backfill, characterized by its friction angle, also did not show any observable effect on the fundamental frequency of the reinforced-soil retaining wall. However, the resonance frequencies of wall models were dependent on the ground motion intensity and to a lesser extent, on the width to height ratio of the backfill.  相似文献   
12.
This paper investigates the effect of fire on the performance of geosynthetic reinforced soil bridge abutments using experimental tests and finite element analyses. Experimental programs were comprised of a series of tensile strength tests at elevated temperatures and fire resistance tests, which were performed on a physical model. Findings revealed the adverse effect of fire on geosynthetic reinforced soil bridge abutments when fire duration exceeded 60 min. Results show that the depth within the backfill affected by the fire is approximately 50 cm.  相似文献   
13.
In this paper, a model geosynthetic-reinforced soil retaining walls (GRS-RW) is tested by vertically loading it through a rough footing on the top near the retaining wall and the results are simulated by a sophisticated nonlinear Finite Element Method (FEM) having a novel rate dependent constitutive model for both the backfill material and the geosynthetic reinforcement. Usually, polymer geosynthetic reinforcement is known to exhibit more-or-less rate-dependent stress–strain or load–strain behavior due to their viscous properties. The geomaterials (i.e., clay, sand, gravel and soft rock) also exhibit viscous properties. The viscous behavior of geometrials are quite different from that of the polymer based geosynthetic-reinforcements. It has been revealed recently that viscous behavior of sand is a kind of temporary effect, which vanishes with time. So the rate-dependent deformation of backfill reinforced with polymer geosynthetic reinforcement becomes highly complicated due to interactions between the elasto-viscoplastic properties of backfill and reinforcement. In the present study, a scaled model geosynthetic-reinforced soil retaining wall is tested with a vertically loaded rough rigid footing. The results of the model test are simulated by using an appropriate elasto-viscoplastic constitutive model of both sand and geogrid embedded in a nonlinear plane strain FEM.  相似文献   
14.
Summary The computer aided design of geosynthetic reinforced soil walls is reported. The magnitude of tensile forces in the geosynthetic reinforcement has also been studied under external vertical and horizontal strip loads.  相似文献   
15.
土工织物作为一种新型的建筑材料,因经济和技术及过滤、排水、隔离、加筋、防护作用的优势,国外自20世纪50年代后期,我国自70年代后期广泛应用于岩土工程的各个方面。土与织物界面相互作用的机理十分复杂,室内测试目前还处于探索和完善阶段。主要介绍土工织物与土的直剪摩擦试验方面的研究。  相似文献   
16.
Waterfront structures such as seawalls, dikes, and levees are frequently subjected to scouring at the toe of the slope, leading to deteriorated performance and increased failure potential. To this end, some model reinforced steep-faced slopes consisting of a two-dimensional backfill were brought to failure to explore the failure mechanisms of some geosynthetic-reinforced slopes subjected to simulated toe scouring. Results of model tests indicate that in the case of shallow scouring, a reinforcement length (L) increase from 0.4 to 1.0 Ht (Ht, total height of reinforced walls) significantly increases the tolerance against toe scouring-induced failures. In this case, a local bearing capacity failure of facing is the dominant failure mode. In the case of deep scouring, an increase in L beyond 0.7 Ht provides no additional tolerance against toe scouring because the ultimate state is always associated with a global circular sliding in the unreinforced zone. Experimental values of the lateral pressure coefficient (Kt) converted from the measured reinforcement forces indicate that reinforcement forces consistently increase in response to toe scouring up to the final collapsing state and that the reinforcement forces for L?=?1.0 Ht mobilize more effectively than those for L?=?0.7 Ht.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号