首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Modelling of interfaces in geotechnical engineering is an important issue. Interfaces between structural elements (e.g., anchors, piles, tunnel linings) and soils are widely used in geotechnical engineering. The objective of this article is to propose an enhanced hypoplastic interface model that incorporates the in-plane stresses at the interface. To this aim, we develop a general approach to convert the existing hypoplastic model with a predefined limit state surface for sands into an interface model. This is achieved by adopting reduced stress and stretching vectors and redefining tensorial operations which can be used in the existing continuum model with few modifications. The enhanced interface model and the previous model are compared under constant-load, stiffness and volume conditions. The comparison is followed by a verification of two the approaches for modelling the different surface roughness. Subsequently, a validation between available experimental data from the literature versus simulations is presented. The new enhanced model gives improved predictions by the incorporation of in-plane stresses into the model formulation.  相似文献   

2.
Eighty-four to ninety-eight percent of land subsidence in Shanghai City is caused by the visco-elastic–plastic deformation of sediments. Numerical experiments are done on the sediments with visco-elastic–plastic deformation in Shanghai to verify the modified Merchant model (MM model) and land subsidence model based on the modified Merchant (LS-MM) model. There are two advantages of the MM model and the LS-MM model. One is that only a few parameters are involved. There are three parameters in the MM model and four parameters in the LS-MM model. The other one is that both models can describe elastic, elastic–plastic and visco-elastic deformation in addition to visco-elastic–plastic deformation. The corresponding models are developed by setting proper values of the three parameters of μ, α 1 and α 2. The two advantages make the LS-MM model flexible and applicable to the simulation of the large regional land subsidence with visco-elastic–plastic deformation and other different kinds of deformation. The results can be improved by variable parameters, especially specific storage.  相似文献   

3.
Concrete-faced rockfill dams (CFRD) are widely used in large-scale hydraulic projects. The face slab, the key seepage-proof structure of great concern, has a strong interaction with the neighboring gravel cushion layer due to a significant difference in their stiffness. An elasto-plasticity damage interface element, a numerical format of the EPDI model, is described for numerical analysis of a CFRD that can trace the separation and re-contact between the face slab and the cushion layer at the interface. As verified by simulating slide block and direct shear interface tests, this element was confirmed to capture effectively the primary monotonic and cyclic behaviors of the interface. This element can easily be extended to the finite element method (FEM) programs that involve the Goodman interface element. The analysis of a typical CFRD showed that the interface model describes a significant effect on the stress response of the face slab under different conditions, including dam construction, water storage, and earthquake. Treatments of the cushion layer, such as an asphalt layer, changed the behavior of the interface between it and the face slab, which resulted in a significant effect on the stress response of the face slab. The top of the face slab exhibited a significant separation from the cushion layer during construction, induced mainly by construction of the neighboring dam body.  相似文献   

4.
Soil nailing has been widely used as a reinforcing technique to retain excavations and stabilise slopes. Proper assessment of the interaction between the nails and the surrounding soil is central to safe and economical design of the composite reinforced soil structure. In this note, a new interface model, denoted as “embedded bond-slip model”, is proposed to model the soil–nail interaction numerically in a simplified manner. Combining the key features of the embedded element technique and the conventional interface element method, the proposed plane–strain interface model has the advantages that no special considerations have to be given to the arrangement of the finite element mesh for the soil nails, and that possible tangential slippage along the interface can be modelled. The formulation also allows pore water flow across the soil nails to be incorporated into the analysis. The proposed model has been implemented into a finite element code and verified by simple element tests under different uni-direction loading conditions. Using the proposed interface model, back analyses of a field test involving a soil-nailed cut slope subjected to a rise in groundwater table have been conducted. This note presents the details of the embedded bond-slip model and the numerical results which demonstrate that the proposed model is capable of simulating soil–nail interaction conveniently and realistically.  相似文献   

5.
Lightly loaded structures constructed on expansive soils may develop structural damage as a result of changes in the soil’s moisture content. This study investigated an analytical model of soil–structure interaction to assess the settlement of dwellings built on swelling soils when droughts occur. The building behavior was investigated with the Euler–Bernoulli beam theory, and the ground behavior was investigated with a Winkler-derived model based on the state surface approach. The analytical model results were compared to those of a finite element analysis using the Barcelona Expansive Model (BExM) performed with Code_Bright.The analytical model was then used to assess the settlement transmission ratio for a typology of clayey soils and different parameters of building. The results indicated that the final deflection of the building increased with the building length and soil suction. The building deflection due to the suction variations was inversely proportional to the load, the rigidity of the building and the embedding depth of the foundation. Increasing these parameters made the building less vulnerable to shrinkage and swelling action.  相似文献   

6.
In this study, we developed a physiographic soil erosion–deposition model to simulate sediment yield from a watershed into Agongdian reservoir and sediment flushing to estimate the efficiency of empty flushing. The model was verified using data related to Typhoons Morakot and Fanapi. Thereafter, we calculated the sediment flushing efficiency of empty storage under the conditions of 1- and 2-day storms with seven return periods. The simulated results revealed that the amount of sediment yield from Joushui River watershed was approximately 70% on average, whereas that from Wanglai River watershed was approximately 30%. These results are consistent with those of a government research report, which suggested that the sediment yield figures from Joushui and Wanglai River watersheds were 72 and 28%, respectively. Furthermore, the efficiency of empty flushing was more than 55% when using the shaft spillway pipe, suggesting that the model can be applied to estimate sediment yield and flushing efficiency.  相似文献   

7.
8.
This paper focuses on the mechanisms taking place in a granular platform supported by piles in soft soil. Several modelling approaches were explored. A two-dimensional small scale model test using the Taylor–Schneebeli soil analogue was first developed and the experimental results were compared to a discrete element model using the particle code PFC. The validation of this numerical approach allowed the parametric study to be extended numerically. Parametric studies were also performed on continuum model using the finite-difference code FLAC. Comparison of the parametric studies performed on each modelling approach underlined some differences and lead to a consideration on the macro- and micromechanical parameters.  相似文献   

9.
10.
Bate  Bate  Nie  Shaokai  Chen  Zejian  Zhang  Fengshou  Chen  Yunmin 《Acta Geotechnica》2021,16(6):1949-1960
Acta Geotechnica - The soil–water characteristic curve (SWCC) of granular materials is crucial for many emerging engineering applications, such as permeable pavement and methane hydrate...  相似文献   

11.
In recent years,more and more attention has been paid to the problem of the cryosphere changes on the Tibetan Plateau,and it has gradually become a hot issue for scholars. Known as the“water tower of Asia”,the Tibetan Plateau is the source of many major rivers in Asia. Under the combined influence of climate change and human activities,water resources on the Tibetan Plateau have undergone profound changes,especially soil water,as an important component of water resources,which plays an important role in regulating vegetation and crop growth,rainfall and runoff. However,global warming leads to the degradation of permafrost and seasonal⁃ ly frozen soil,which affects the original water cycle process and the spatial and temporal pattern of water re⁃ sources by changing the properties of soil water storage and water transport. In the Tibetan Plateau,where there are few data,it is difficult to directly study the soil water cycle process under freezing-thawing by using original data. Therefore,it is an important means to simulate the variation characteristics of soil water and temperature under freezing-thawing in seasonally frozen soil regions of the Tibetan Plateau by using coupling model of soil water and heat. Aiming at the key problem of the difference of soil temperature and moisture characteristics in typical seasonally frozen soil regions under different meteorological conditions,this paper simulated the charac⁃ teristics of soil moisture and temperature change in Maqu,Naqu(Nagqu)and Shiquanhe from 2017 to 2018 by using SHAW(Simultaneous Heat and Water)model and three soil moisture characteristic curve models. The simulation effect and variation characteristics of soil moisture and temperature under different meteorological conditions were analyzed,and the influence of soil moisture characteristic curve model on the simulation effect was studied. The results show that SHAW model can well simulate the temporal variation and vertical distribu⁃ tion of soil temperature and moisture under different meteorological conditions. The simulation effect of soil tem⁃ perature is better than that of soil moisture. The average NSE,R2 and RMSE of soil temperature are 0. 88,0. 96 and 2. 20 ℃,respectively. The mean NSE,R2 and RMSE of soil moisture are 0. 60,0. 72 and 0. 03 m3·m-3,respec⁃ tively. In terms of different meteorological conditions,the simulation effect of soil temperature in relatively dry region was significantly better than that in humid region,while the simulation effect of soil water in relatively hu⁃ mid region was significantly better than that in arid region. From different depths in soil,the simulation effect of soil temperature decreases gradually with the increase of depth,while the simulation effect of soil moisture in the middle and lower layers is better than that in the surface layer. From the view of different soil moisture character⁃ istic curve models,different soil water characteristic curve models have no significant effect on soil temperature simulation effect,but there are significant differences in soil moisture simulation effect. In addition,there are great differences and uncertainties in simulating soil temperature and moisture in different freezing-thawing stag⁃ es. With the increasing trend of climate warming,permafrost and seasonally frozen soil on the Tibetan Plateau may continue to degrade,may change the current water resources pattern,resulting in frequent extreme weather events. Therefore,from the perspective of numerical simulation,this paper verified the applicability of soil moisture and heat coupling model in soil temperature and moisture simulation under different meteorological con⁃ ditions,revealed the influence of precipitation and temperature on soil temperature and moisture simulation at different depths in seasonally frozen soil regions,and analyzed the differences in simulation effects of different soil moisture characteristic curve models. The results provide reference for the study of soil water resources vari⁃ ation under freezing-thawing conditions. © 2023 Chinese Journal of General Practitioners. All rights reserved.  相似文献   

12.
Brezzi  Lorenzo  Gabrieli  Fabio  Cola  Simonetta 《Acta Geotechnica》2020,15(3):695-714
Acta Geotechnica - The collapse test with granular or cohesive materials known as ‘slump test’ is a simple, small-scale experiment. It can be used to study the rheology of soil masses...  相似文献   

13.
This petrophysical model represents a very slow metamorphism, with its characteristically “pre-granitic” stages and facies, the kind that develops in deep geosynclinal downwarps and deep platformal syneclises, but not in intermontane downwarps or aulacogens. The rate of the subsidence, as in the model, indicates 6 to 7 km thicknesses of the 100°C metamorphic zones and much greater depths for the high-temperature metamorphism and actual smelting of the sediments, under certain conditions. — V .P Sokoloff.  相似文献   

14.
The ppaer re-examines three suggestions previously made concerning the colonization of the Krakatau islands since the extirpating 1883 eruption that involve the more recently emergent volcanic island Anak Krakatau, which itself suffered a devastating eruption in 1952. The suggestions re-addressed in the light of recent comments by other workers are:
(1)  Anak Krakatau offers, in general terms, an analogy of the early successional processes that occurred on the three older islands in the first decades after the 1883 extirpating eruption.
(2)  Anak Krakatau (with the Sertung spit) may have acted as an ecological refuge for open country species whose habitat on the three older islands declined as a result of vegetation succession.
(3)  Mainland open country species that did not colonize the archipelago when the appropriate vegetational successional stage occurred on the three older islands may now do so through a reopened early-successional window — Anak Krakatau (and the Sertung spit).
  相似文献   

15.
Zhai  Qian  Rahardjo  Harianto  Satyanaga  Alfrendo  Dai  Guoliang 《Acta Geotechnica》2020,15(12):3371-3381
Acta Geotechnica - During heavy rainfalls, the surface soil on a slope may be eroded and the erosion is much dependent on the tensile strength of soil. In addition, the tensile strength of soil is...  相似文献   

16.
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\)), differences of circular vertical and horizontal \(\sigma ^{\mathrm{o}} \, (\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}})\) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (\({\hbox {RMS}}_{\mathrm{height}}\)). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., \(\sigma ^{\mathrm{o}}\). Near surface SM measurements were related to \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\) derived using 5.35 GHz (C-band) image of RISAT-1 and \({\hbox {RMS}}_{\mathrm{height}}\). The roughness component derived in terms of \({\hbox {RMS}}_{\mathrm{height}}\) showed a good positive correlation with \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}} \, (R^{2} = 0.65)\). By considering all the major influencing factors (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\)), an SEM was developed where SM (volumetric) predicted values depend on \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\). This SEM showed \(R^{2}\) of 0.87 and adjusted \(R^{2}\) of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (\({\hbox {SM}}_{\mathrm{Observed}}\)) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash–Sutcliffe efficiency (NSE) = 0.91 (\({\approx } 1\)), index of agreement (d) = 1, coefficient of determination \((R^{2}) = 0.87\), mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences \(({\hbox {S}}_{\mathrm{d}}^{2}) = 0.004\). The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on \(\sigma ^{\mathrm{o}}\). By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.  相似文献   

17.
A series of swelling tests is performed on a typical Nanyang expansive soil with medium swelling capacity compacted at various initial densities and water contents. The swelling tests are separately conducted using the conventional oedometer to confine the lateral swelling of the soil specimens, and using the GDS triaxial apparatus to allow the free volumetric swelling. The multiple nonlinear mathematical method is adopted to obtain the lateral swelling model (i.e. K-0 model), which fully considers the coupled effect of initial degree of compaction, moisture content and overburden pressure on the swelling strain. Also, an empirical model for the relationship between spherical stress and volumetric strain is proposed by triaxial swelling test. Based on the K-0 swelling model, a formula is proposed to quantitatively evaluate the swell potential, and also a theoretical calculation method is derived to determine the processing layer thickness of expansive soil slope. Based on the assumption that volumetric swelling strain only changes with spherical stress and is not affected by the deviatoric stress, the correlations between the K-0 model and triaxial model are analyzed, and a method to calculate the volumetric swelling strain by only employing the K-0 model is given. Experimental results show that the proposed K-0 model with multifactor coupling is reasonable to predict the swelling potential of compacted expansive soil. It is found that the key factor to link the K-0 model and triaxial swelling model is assuming an average static lateral pressure coefficient. The average static lateral pressure coefficient tends to decreases with increasing overburden pressure by inversion method. This tendency of average static lateral pressure coefficient is believed to rely on the fact that lateral swelling pressure decreases with the increase of overburden pressure.  相似文献   

18.
How to evaluate reasonably the stability of a soil slope reinforced with piles (SSRP) still is an urgent problem. At present, the three-dimensional (3D) finite element strength reduction method has been used for the soil slope stability analysis. However, to accurately determine the global instability of soil slopes is the key to implementing the strength reduction finite element method. In this paper, the 3D finite element strength reduction algorithm (FESRA), based on Hill’s model theory, is proposed to assess the stability of SSRP and study on the relationship between the safety coefficients of SSRP and the displacements of slope mass. The results show that: (1) the relationship between the safety coefficients of SSRP and the displacements of slope mass agrees with the Hill’s model; (2) the proposed method (3D FESRA based on Hill’s model theory) in this study may take into account simultaneously the pile response and slope stability, and makes the results of SSRP stability analysis reasonable and reliable, which could be used as a reference for the evaluation of stability of the same type of slope; and (3) further study should be done to confirm whether the proposed method in this study is suitable for other types of slopes.  相似文献   

19.
The Olyutorsky–Kamchatka foldbelt formed as a result of two successive collisions of the Achaivayam–Valaginsky and Kronotsky–Commander island arcs with the Eurasian margin where the two terranes docked after a long NW transport. We model their motion history from the Middle Campanian to Present and illustrate the respective plate margin evolution with ten reconstructions. In this modeling the arcs are assumed to travel on the periphery of the large plates of Eurasia, North America, Pacific, and Kula, for which the velocities and directions of motion are known from published data. The model predicts that the Achaivayam–Valaginsky arc was the leading edge of the Kula plate from the Middle Campanian to the Middle Paleocene and then moved slowly with the Pacific plate as long as the Middle Eocene when it accreted to Eurasia. The Kronotsky arc initiated in the Middle Campanian on the margin of North America and was its part till the latest Paleocene when the terrane changed polarity to move northwestward with the Pacific plate and eventually to collide with Eurasia in the Late Miocene. The predicted paleolatitudes of the Achaivayam–Valaginsky and Kronotsky–Commander island arcs for the latest Cretaceous and Paleogene are consistent with nine (out of eleven) reliable paleomagnetic determinations for samples from the two arcs. Additional changes imposed on the initial model parameters (kinematics of the large plates, relative position of the Kula–Pacific Ridge and the Emperor seamount chain, or time of active volcanism within the arcs) worsen the fit of the final reconstructions to available geological and paleomagnetic data. Therefore, the suggested model appears to be the most consistent one at this stage of knowledge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号