首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5061篇
  免费   543篇
  国内免费   1435篇
测绘学   66篇
大气科学   120篇
地球物理   1188篇
地质学   4831篇
海洋学   420篇
天文学   67篇
综合类   30篇
自然地理   317篇
  2024年   38篇
  2023年   99篇
  2022年   146篇
  2021年   227篇
  2020年   337篇
  2019年   289篇
  2018年   289篇
  2017年   364篇
  2016年   317篇
  2015年   321篇
  2014年   410篇
  2013年   604篇
  2012年   398篇
  2011年   194篇
  2010年   173篇
  2009年   258篇
  2008年   348篇
  2007年   282篇
  2006年   281篇
  2005年   239篇
  2004年   261篇
  2003年   168篇
  2002年   156篇
  2001年   119篇
  2000年   147篇
  1999年   94篇
  1998年   94篇
  1997年   92篇
  1996年   52篇
  1995年   39篇
  1994年   68篇
  1993年   29篇
  1992年   23篇
  1991年   10篇
  1990年   17篇
  1989年   7篇
  1988年   13篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有7039条查询结果,搜索用时 15 毫秒
101.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
102.
In 2005 Geostandards and Geoanalytical Research embarked upon a new initiative for its readers. Key researchers in various fields of geoanalytical technique development and their application were identified and invited to provide reviews pertinent to their expertise. As noted in the first of these publications "…instead of revisiting the historical context or decades of development in each analytical technique, the goal here has been to capture a snapshot of "hot topics" across a range of fields as represented in the… literature" (Hergt et al . 2005). Rather than prepare an annual review, a decision was taken earlier this year to provide a biennial summary of progress and accomplishments, in this case for the years 2004–2005. The principal techniques employed in Earth and environmental sciences are covered here, and include laser ablation and multicollector ICP-MS, ICP-AES, thermal ionisation and secondary ion mass spectrometry, as well as neutron activation analysis, X-ray fluorescence and atomic absorption spectrometry. A comprehensive review of the development of reference materials, often essential to these techniques, is also provided. The contributions assembled serve both to keep readers informed of advances they may be unfamiliar with, but also as a means of showcasing examples of the breadth and depth of work being conducted in these fields.  相似文献   
103.
This review of the literature from 2004 and 2005 concerning secondary ion mass spectrometry (SIMS) highlights the contribution the technique has made in the fields of petrology, geochronology, cosmochemistry and material sciences. In petrology, much research was devoted to the measurement of stable isotopes and trace elements by developments in multicollection acquisition, with emphasis on low atomic mass number elements. Elements studied in particular were S (in sulfides), O (in garnets), C (in sedimentary organic matter), Cl (in glasses) and Si. Novel applications of SIMS to geochronology have included the measurement of young zircon grains by the U-Pb and U-Th decay methods. An increasing number of studies have combined U-Pb geochronology with the measurement of trace elements or stable isotopes in zircon.  相似文献   
104.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   
105.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

106.
Three methods were combined to determine the groundwater recharge and transfer processes of a landslide prone area. First, the radiomagnetotelluric method was used to investigate the distribution of electrical resistivity (ρ) of the subsurface and build a three-dimensional model of permeability (k), through an experimental relation between ρ and k. Second, this structural model of permeability and additional climatologic data were used to fix boundary and recharge conditions to perform a three-dimensional and transient numerical simulation of the groundwater flow. Finally 18-Oxygen time series observed at the main springs were used to validate the model. This association of methods led to an improved characterization of the groundwater flow system at local scale and a better understanding of the role of this system on the landslide phenomenon. This structured approach is thought to be useful to design specific remediation strategies to drain the unstable mass.  相似文献   
107.
108.
Petrological, geochemical, and Nd isotopic analyses have been carried out on rock samples from the Rainbow vent field to assess the evolution of the hydrothermal system. The Rainbow vent field is an ultramafic-hosted hydrothermal system located on the Mid-Atlantic Ridge characterized by vigorous high-temperature venting (∼365°C) and unique chemical composition of fluids: high chlorinity, low pH and very high Fe, and rare earth element (REE) contents (Douville et al., Chemical Geology 184:37–48, 2002). Serpentinization has occurred under a low-temperature (<270°C) retrograde regime, later overprinted by a higher temperature sulfide mineralization event. Retrograde serpentinization reactions alone cannot reproduce the reported heat and specific chemical features of Rainbow hydrothermal fluids. The following units were identified within the deposit: (1) nonmineralized serpentinite, (2) mineralized serpentinite—stockwork, (3) steatite, (4) semimassive sulfides, and (5) massive sulfides, which include Cu-rich massive sulfides (up to 28wt% Cu) and Zn-rich massive sulfide chimneys (up to 5wt% Zn). Sulfide mineralization has produced significant changes in the sulfide-bearing rocks including enrichment in transition metals (Cu, Zn, Fe, and Co) and light REE, increase in the Co/Ni ratios comparable to those of mafic Cu-rich volcanic-hosted massive sulfide deposits and different 143Nd/144Nd isotope ratios. Vent fluid chemistry data are indicative of acidic, reducing, and high temperature conditions at the subseafloor reaction zone where fluids undergo phase separation most likely under subcritical conditions (boiling). An explanation for the high chlorinity is not straightforward unless mixing with high salinity brine or direct contribution from a magmatic Cl-rich aqueous fluid is considered. This study adds new data, which, combined with the current knowledge of the Rainbow vent field, brings compelling evidence for the presence, at depth, of a magmatic body, most likely gabbroic, which provides heat and metals to the system. Co/Ni ratios proved to be good tools used to discriminate between rock units, degree of sulfide mineralization, and positioning within the hydrothermal system. Deeper units have Co/Ni <1 and subsurface and surface units have Co/Ni >1.  相似文献   
109.
The origin of the hypersaline fluids (magmatic or basinal brine?), associated with iron oxide (Cu–U–Au–REE) deposits, is controversial. We report the first chlorine and strontium isotope data combined with Cl/Br ratios of fluid inclusions from selected iron oxide–copper–gold (IOCG) deposits (Candelaria, Raúl–Condestable, Sossego), a deposit considered to represent a magmatic end member of the IOCG class of deposit (Gameleira), and a magnetite–apatite deposit (El Romeral) from South America. Our data indicate mixing of a high δ 37Cl magmatic fluid with near 0‰ δ 37Cl basinal brines in the Candelaria, Raúl–Condestable, and Sossego IOCG deposits and leaching of a few weight percent of evaporites by magmatic-hydrothermal (?) fluids at Gameleira and El Romeral. The Sr isotopic composition of the inclusion fluids of Candelaria, Raúl–Condestable, and El Romeral confirms the presence of a non-magmatic fluid component in these deposits. The heavy chlorine isotope signatures of fluids from the IOCG deposits (Candelaria, Raúl–Condestable, Sossego), reflecting the magmatic-hydrothermal component of these fluids, contrast with the near 0‰ δ 37Cl values of porphyry copper fluids known from the literature. The heavy chlorine isotope compositions of fluids of the investigated IOCG deposits may indicate a prevailing mantle Cl component in contrast to porphyry copper fluids, an argument also supported by Os isotopes, or could result from differential Cl isotope fractionation processes (e.g. phase separation) in fluids of IOCG and porphyry Cu deposits.  相似文献   
110.
This study was based on the analysis of isotopic compositions of hydrogen and oxygen in samples from precipitation, groundwater and stream water. In addition, parts of groundwater samples were dated by carbon-14 and tritium. These data are integrated to provide other views of the hydrologic cycle in the Hsinchu-Miaoli groundwater district. The groundwater district is principally composed of Pleistocene and Holocene aquifers. The Pleistocene aquifers are highly deformed by folding and faults into small sub-districts with areas of only tens of square kilometers. These aquifers are exclusively recharged by local precipitation. The Holocene aquifers cover narrow creek valleys, only tens of meters in thickness. The local meteoric water line (LMWL), constructed from rainfall samples in the Hsinchu Science Park, is described by the equation δD=8.02δ18O+10.16, which agrees with the global meteoric water line. In addition, the precipitation isotopic compositions can be categorized into two distinct end members: typhoon type and monsoon type. The groundwater isotopic compositions are perfectly located on an LMWL and can be considered a mixture of precipitations. Based on the mass balance of isotopic compositions of oxygen and hydrogen, infiltration is more active in the rainy season with depleted isotopic compositions. The amount of infiltration during May–September is roughly estimated to comprise at least 55% of the whole year’s recharge. The isotopic compositions of stream water are expressed by a regression equation: δD=7.61δ18O+9.62, which is similar to the LMWL. Although precipitation isotopic compositions are depleted during summer time, the isotopic compositions contrarily show an enriched trend in the upstream area. This is explained by the opposite altitude effect on isotopic compositions for typhoon-related precipitations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号