首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2231篇
  免费   484篇
  国内免费   794篇
测绘学   132篇
大气科学   166篇
地球物理   322篇
地质学   2351篇
海洋学   116篇
天文学   17篇
综合类   156篇
自然地理   249篇
  2024年   14篇
  2023年   31篇
  2022年   97篇
  2021年   124篇
  2020年   107篇
  2019年   115篇
  2018年   102篇
  2017年   125篇
  2016年   125篇
  2015年   127篇
  2014年   146篇
  2013年   165篇
  2012年   217篇
  2011年   138篇
  2010年   152篇
  2009年   154篇
  2008年   115篇
  2007年   152篇
  2006年   149篇
  2005年   140篇
  2004年   132篇
  2003年   100篇
  2002年   84篇
  2001年   90篇
  2000年   72篇
  1999年   67篇
  1998年   66篇
  1997年   86篇
  1996年   61篇
  1995年   43篇
  1994年   53篇
  1993年   32篇
  1992年   34篇
  1991年   22篇
  1990年   21篇
  1989年   9篇
  1988年   11篇
  1987年   15篇
  1986年   10篇
  1985年   3篇
  1984年   2篇
  1980年   1篇
排序方式: 共有3509条查询结果,搜索用时 31 毫秒
101.
An early Cretaceous alkaline ultramafic-mafic complex is emplaced within the Proterozoic rocks of Shillong plateau at Jasra, Karbi Anglong district of Assam. It is associated to the fracture system of Barapani-Tyrsad shear zone, Kopali faults, and Um Ngot lineaments and mainly comprises pyroxenite, gabbro and nepheline syenite. Few small mafic dykes, emplaced within pyroxenitic and granitic plutons, are also reported. No such dyke is reported to cut gabbros or nepheline syenites. Nepheline syenites occur either in the form of small dykes in pyroxenites or as differentiated bodies in the gabbros. Mineralogical and chemical composition of pyroxenite and gabbro clearly indicate their affinity to the alkaline magmatism. Syenitic samples show miaskitic character (agpaitic index <1), also indicates affinity with alkaline-carbonatite magmatism. Calcite is encountered in a number of pyroxenite samples. From the presented petrological and geochemical data it is difficult to establish any significant genetic relationship through simple differentiation process between these rocks. These data probably suggest that these rocks are derived from a primary carbonatite magma, generated by the low-degree melting of a metasomatized mantle peridotite. CO2 released by this process also progressively metasomatizes the lherzolite to an alkaline wehrlite and melts derived from alkaline wehrlite (ultrabasic alkaline silicate magma) may be responsible for crystallization of Jasra alkaline ultramafic-mafic rocks.  相似文献   
102.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   
103.
北京某交易中心一期基坑工程属大型深基坑工程,各种地下管线和地上建(构)筑物复杂,介绍了针对其复杂环境条件的综合支护措施的设计思路与实际应用效果。  相似文献   
104.
105.
Abstract. Chemistry and sulfur isotopes are analyzed for a series of rocks in the chert‐dominant sequence around the stratiform manganese ore deposit of the Noda‐Tamagawa mine in the northern Kitakami Terrane, northeast Japan. The sequence is litholog‐ically classified into six units in ascending order: lower bedded chert, lower black shale, massive chert, manganese ore, upper black shale, and upper bedded chert. The rocks around the manganese ore deposit exhibit anomalous enrichment in Ni (max. 337 ppm), Zn (102) and U (30) in the upper part of lower bedded chert, Mo (122), Tl (79) and Pb (33) in the lower black shale, MnO, Cu (786) and Co (62) in the manganese ore, and As (247) and Sb (17) in the upper black shale. The aluminum‐normalized profiles reveal zonal enrichment of redox‐sensitive elements around the manganese bed: Zn‐Ni‐Fe‐Mo‐U(‐Co), Tl‐Pb(‐Mo), Mn‐Fe‐Cu‐V‐Cr‐Co(‐Zn) and As‐Sb in ascending order. The uppermost part of the lower bedded chert and black shale exhibit negative Ce/Ce* values, whereas the massive chert, manganese ore and lower part of the upper bedded chert display positive values. The isotopic δ34S values are 0±6 % in the lower part of the lower bedded chert, ‐19 to ‐42 % in the upper part of the lower bedded chert, ‐36 to ‐42 % in the lower black shale, ‐28 to ‐35 % in the massive chert, manganese ore and upper black shale, and ‐23±5 % in the upper bedded chert. Thus, there is a marked negative shift in δ34S values in the lower bedded chert, and an upward‐increasing trend in δ34S through the manganese ore horizon. The present data provide evidence for a change in the paleoceanographic environmental resulting from inflow of oxic deepwater into the stagnant anoxic ocean floor below the manganese ore horizon. This event is likely to have triggered the precipitation of manganese oxyhydroxides. The redistribution of redox‐sensitive elements through the formation of metalliferous black shale and manganese carbonate ore may have occurred in association with bacterial decomposition of organic matter during early diagenesis of initial manganese oxyhydroxides.  相似文献   
106.
Abstract. Inorganic chemical compositions are determined for a series of rocks crossing an Early Jurassic stratiform manganese ore deposit in a chert‐dominant sequence at Katsuyama, in the Mino Terrane of central Japan. The lithology in the vicinity of the manganese ore bed is classified into lower bedded chert, black shale, massive chert, manganese ore and upper bedded chert, in ascending order. The rocks surrounding the manganese deposit are anomalously high in certain elements: Pb (max. 29 ppm), Ni (1140) and Co (336) in the lower bedded chert, Mo (438), As (149), Tl (29) and U (12) in the black shales, V (210) and Cr (87) in the massive chert, and MnO and W (24) in the manganese ore. The aluminum‐normalized profiles reveal a distinct zonation of redox‐sensitive elements: Pb‐Zn, Ni‐Co‐Cu(‐Zn) and U‐Cr in the lower bedded chert, Mo‐As‐Tl in the black shale, V(‐Cr) in the massive chert, and Mn‐Fe‐Ba‐W in the manganese ore, in ascending order. The lower and upper bedded cherts and manganese ore generally exhibit flat rare earth element patterns with positive Ce anomalies, whereas the uppermost part of the lower bedded chert, the black shale and massive chert have flat patterns with weak or nonexistent negative Ce anomalies and weak positive Eu anomalies. The strong enrichment in Ni, Co, W, Tl and As detected in the Katsuyama section is not recognized in other sediments, including those of anoxic deposition origin, but is identified in modern ferromanganese nodules, suggesting that metal enrichment in the Katsuyama section is essentially due to the formation of ferromanganese nodules rather than to deposition in an anoxic environment. The observed elemental zonation is well explained by equilibrium calculations, reflecting early diagenetic formation and associated gradual reduction with depth. The concentration profiles in combination with litho‐ and biostratigraphical features suggest that formation of these bedded manganese deposits was triggered by an influx of warm, saline and oxic water into a stagnant deep ocean floor basin in Panthalassa at the end of the middle Early Jurassic. Paleoceanographic environmental controls thus appear to be important factors in the formation and preservation of this type of stratiform manganese deposit.  相似文献   
107.
Abstract. Rare earth, major and trace element geochemistry is reported for the Kunimiyama stratiform ferromanganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The deposit immediately overlies greenstones of mid-ocean ridge basalt (MORB) origin and underlies red chert. The ferromanganese ores exhibit remarkable enrichments in Fe, Mn, P, V, Co, Ni, Zn, Y and rare earth elements (excepting Ce) relative to continental crustal abundance. These enriched elements/ Fe ratios and Post-Archean Average Australian Shale-normalized REE patterns of the ferromanganese ores are generally analogous to those of modern hydrothermal ferromanganese plume fall-out precipitates deposited on MOR flanks. However in more detail, Mn and Ti enrichments in the ferromanganese ores are more striking than the modern counterpart, suggesting a significant contribution of hydrogenetic component in the Kunimiyama ores. Our results are consistent with the interpretation that the Kunimiyama ores were umber deposits that primarily formed by hydrothermal plume fall-out precipitation in the Panthalassa Ocean during the Early Permian and then accreted onto the proto-Japanese island arc during the Middle Jurassic. The presence of strong negative Ce anomaly in the Kunimiyama ores may indicate that the Early Permian Panthalassa seawater had a more striking negative Ce anomaly due to a more oxidizing oceanic condition than today.  相似文献   
108.
Twenty-four new zircon and apatite fission track ages from the Getic and Danubian nappes in the South Carpathians are discussed in the light of a compilation of published fission track data. A total of 101 fission track ages indicates that the Getic nappes are generally characterized by Cretaceous zircon and apatite fission track ages, indicating cooling to near-surface temperatures of these units immediately following Late Cretaceous orogeny.The age distribution of the Danubian nappes, presently outcropping in the Danubian window below the Getic nappes, depends on the position with respect to the Cerna-Jiu fault. Eocene and Oligocene zircon and apatite central ages from the part of the Danubian core complex situated southeast of this fault monitor mid-Tertiary tectonic exhumation in the footwall of the Getic detachment, while zircon fission track data from northwest of this fault indicate that slow cooling started during the Latest Cretaceous. The change from extension (Getic detachment) to strike-slip dominated tectonics along the curved Cerna-Jiu fault allowed for further exhumation on the concave side of this strike-slip fault, while exhumation ceased on the convex side. The available fission track data consistently indicate that the change to fast cooling associated with tectonic denudation by core complex formation did not occur before Late Eocene times, i.e. long after the cessation of Late Cretaceous thrusting.Core complex formation in the Danubian window is related to a larger-scale scenario that is characterized by the NNW-directed translation, followed by a 90° clockwise rotation of the Tisza-Dacia “block” due to roll-back of the Carpathian embayment. This led to a complex pattern of strain partitioning within the Tisza-Dacia “block” adjacent to the western tip of the rigid Moesian platform. Our results suggest that the invasion of these southernmost parts of Tisza-Dacia started before the Late Eocene, i.e. significantly before the onset of Miocene-age rollback and associated extension in the Pannonian basin.  相似文献   
109.
Olav Eklund  Alexey Shebanov 《Lithos》2005,80(1-4):229-247
The Åva ring complex is one of four Paleoproterozoic postcollisional shoshonitic ring complexes in southwestern Finland. It is composed of ring dykes of K-feldspar megacryst-bearing granite, mingled in places with a shoshonitic monzonite, and lamprophyre dykes crosscutting all the rocks in a radial pattern. A survey was undertaken to trace the magma chamber beneath the ring complex to date it and measure some intensive parameters to clarify the crystallisation conditions at depth before the granite was emplaced in the upper crust. Mineral separates were extracted from the core zones of K-feldspar megacrysts in the granite, heavy mineral fractions (including zircons) from these separates were used for P-T assessment and age determinations, and the results were compared to data obtained from bulk rock samples. It appears that magma differentiation took place in a midcrustal magma chamber (at 4 to 7 kbar) possibly 30 Ma before the emplacement of the ring complex in the upper crust (deep assemblage 1790 Ma, shallow assemblage 1760 Ma). Relatively high activity of the alkalies and a low oxygen fugacity characterised the midcrustal chamber. The juvenile Svecofennian crust was invaded by shoshonitic magmas from an enriched lithospheric mantle over a long period of time. Some of these magmas were stored and differentiated in the middle crust before transportation to the upper crust. The results also show that coarse-grained granites may provide evidence for several magmatic evolutionary episodes, e.g., differentiation and crystallisation in different environments prior to final emplacement.  相似文献   
110.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号