首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   21篇
  国内免费   17篇
地球物理   68篇
地质学   50篇
海洋学   53篇
自然地理   7篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   14篇
  2018年   12篇
  2017年   6篇
  2016年   1篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有178条查询结果,搜索用时 23 毫秒
61.
The bait-attending fauna of the abyssal-hadal transition zone of the Kermadec Trench, SW Pacific Ocean (4329-7966 m), was investigated using a baited camera and a trap lander. The abyssal stations (4329-6007 m) revealed a typical scavenging fish community comprising macrourids and synaphobranchid eels, as well as natantian decapods. At the hadal depths of 7199 and 7561 m, the endemic liparid Notoliparis kermadecensis was observed aggregating at the bait reaching surprisingly high numbers of 5 and 13, respectively. A total of 3183 invertebrate samples were collected (mean deployment time=16 h) of which 97.8% were of the order Amphipoda (nine families, 16 species). Ten of the amphipod species represent new distributional records for the Kermadec Trench and the New Zealand Exclusive Economic Zone; this includes the shallowest known record of the endemic hadal amphipod Hirondellea dubia (6000, 6007 m). Using amphipods to statistically examine the compositional change across the abyssal-hadal boundary, an ecotone between depths <6007 and >6890 m was found, indicating that there is an ecologically distinct bait-attending fauna in this trench.  相似文献   
62.
63.
Upper mantle shear wave anisotropy under stations in southern Mexico was measured using records of SKS phases. Fast polarization directions where the Cocos plate subducts subhorizontally are oriented in the direction of the relative motion between the Cocos and North American plates, and are trench-perpendicular. This pattern is interpreted as subslab entrained flow, and is similar to that observed at the Cascadia subduction zone. Earlier studies have pointed out that both regions have in common the young age of the subducting lithosphere. Changes in the orientation of the fast axes are observed where the subducting plates change dip and/or are torn, and are thus indicative of 3-D flow around the slab edges. They are consistent with slab rollback, as previously shown by other authors. Some stations located away from the plate boundaries have their fast directions controlled by the absolute motion of the North American plate. The fast axis for station ZAIG, located in the Mesa Central, is oriented WNW-ESE and is different from all the other measurements in this study.  相似文献   
64.
A paleo-seismological study was conducted at Jaflong, Sylhet, Bangladesh, which is on the eastern part of the Dauki fault. The geomorphology around Jaflong is divided into the Shillong Plateau, the foothills, the lower terraces, and the alluvial plain from north to south. Because the foothills and lower terraces are considered to be uplifted tectonically, an active fault is inferred to the south of the lower terraces. This fault, which branches from the Dauki fault as a foreland migration, is known as the Jaflong fault in this paper. The trench investigation was conducted at the southern edge of the lower terrace. The angular unconformity accompanied by folding, which is thought to be the top of the growth strata, was identified in the trench. An asymmetric anticline with a steep southern limb and gentle northern limb is inferred from the back-tilted lower terrace and the folding of the gravel layer parallel to the lower terrace surface. The timing of the seismic event which formed the folding and unconformity is dated to between AD 840 and 920.The trench investigation at Gabrakhari, on the western part of the Dauki fault, revealed that the Dauki fault ruptured in AD 1548 (Morino et al., 2011). Because the 1897 great Indian earthquake (M  8.0; Yeats et al., 1997) was caused by the rupture of the Dauki fault (Oldham, 1899), it is clear that the Dauki fault has ruptured three times in the past one thousand years. The timing of these seismic events coincides with that of the paleo-liquefactions confirmed on the Shillong Plateau. It is essential for the paleo-seismological study of the Dauki fault to determine the surface ruptures of the 1897 earthquake. The Dauki fault might be divided into four rupture segments, the western, central, eastern, and easternmost segments. The eastern and western segments ruptured in AD 840–920 and in 1548, respectively. The 1897 earthquake might have been caused by the rupture of the central segment.  相似文献   
65.
INTRODUCTIONTheDaqingshanpledmont扭nit Is an irllt,oltant active normal tsult In the active fault-depressionzone——Hetao ault-depression zone In the northern part of Ordos Block,North China.It lies in ENEdirection long the southern pledmont of Daqingshan Mountain,dips to south,and extends for 200 kmor。。The fault was formed In the Eocene and strongly activated In the Cenozolc.Its verticaldlspl。ement exceeds 2400 m since the Quaternary(Rese。h Group on Ordos Block,State…  相似文献   
66.
伴随洋壳的俯冲,驼伏其上的海山会导致上覆板块的强烈变形.为解释该构造变形特征,本文运用物理模拟实验的方法,着重分析海山的斜向俯冲对上覆板块变形的影响,并将模拟结果与正向俯冲过程进行对比.实验结果显示:海山开始进入俯冲,前缘楔体的增生会被阻止,同时楔体被抬升并出现脱顶构造,未被海山破坏的楔体会出现后冲断层的激活,后冲断层轴平行于海山的俯冲方向.海山进一步俯冲,突起项部发育一系列张扭性质的微断裂和走滑性质的共轭断裂,尾随突起之后的楔体由于重力会产生正断层系统.比起正向俯冲,斜向俯冲过程中所产生的后逆冲体、海山两侧的叠瓦状逆冲推覆构造都出现不对称分布,断裂和微断裂束的走向不规则散开,后冲断层的轴向及海山俯冲过后在楔体上产生的凹槽的轨迹都不断斜向迁移,且凹槽两侧的地势不一致等.最后利用文中的物理模拟结果,很好的解释了马尼拉海沟中段俯冲构造的构造特征,同时对其他俯冲大陆边缘的构造解释具有指导意义.  相似文献   
67.
大震前显示的地震震源机制趋于一致的变化   总被引:3,自引:0,他引:3  
在构造应力场的制约下强震孕育过程中特定阶段, 震源区中小地震震源机制与构造应力场的方向大体一致, 根据这一特点, 定义各个震源机制解的P轴, B轴, T轴和构造应力场的3个应力主轴在3维空间的夹角之和为一致性参数a, 研究强震前应力场变化特征。 对2006年11月15日千岛岛弧MW8.3地震和2001年6月23日秘鲁MW8.4地震研究表明, 大震发生前孕震区一致性参数a比较低, 震源机制与构造应力场的差异较小, 说明这些前震受到了震源区应力场的统一作用, 而主震发生之后震源机制解的一致性参数比较高, 说明后续发生的地震的震源机制散乱, 表明背景应力场的控制作用开始减弱。  相似文献   
68.
Greece, in particular the western and southern parts close to the subduction zone of the Hellenic Trench, experiences strong earthquakes and subsequent tsunamis. Nevertheless, field evidence of tsunamis from the late Holocene is extremely rare. Our research along the coastlines of the western and southern Peloponnesus resulted in new findings of tsunami impacts in the form of clusters and ridges of large boulders and thick tsunamigenic sand layers encountered in vibracores. Many boulders contained attached marine organisms, which prove that they were transported from the foreshore environment against gravity by extreme wave events. The attached organisms, which have been dated by 14C-AMS, suggest that historical tsunami events of great energy occurred around 1300 cal AD. A wood fragment found at the base of tsunami deposits in a vibracore from Cape Punta was dated to ~ 250 cal AD.  相似文献   
69.
浊流是远距离沉积物运输的一种重要方式,海底浊流广泛存在于海底峡谷或海沟。马尼拉海沟位于南海东北部,是一条正在活动的板块汇聚边界。独特的地理位置(亚热带—热带)和气候条件(台风频发),使得马尼拉海沟浊流频发,然而,现今对马尼拉海沟的浊流研究甚少。本研究通过对马尼拉海沟北部水深3747 m处重力柱岩心(GEO6)进行高精度的粒度及沉积学特征分析,探讨马尼拉海沟浊流沉积规律。GEO6岩心底部细颗粒沉积物中浮游有孔虫的14C的AMS年龄为1405 a B.P.。高精度的粒度分析(0.25 cm)和沉积学特征显示: GEO6岩心记录有至少11次浊流沉积(T1-T11),且这些浊流都有明显的底部粒度最粗(砂质粉砂或砂)、向上粒度逐渐变细的正粒序特征,只有T8沉积体为反粒序特征,可能为异重流沉积。结合区域地质资料,本研究认为1.4 ka B.P.以来,研究区频繁的台风带来了大量陆源松散沉积物堆积在马尼拉海沟上游(高屏峡谷),不稳定的构造环境及地震频发导致这些松散沉积物垮塌并向下游马尼拉海沟输送,在海沟内形成频繁发育的浊流沉积体。  相似文献   
70.
We present a study of the lateral structure and mode of deformation in the transition between the Kuril and Honshu subduction zones. We begin by examining the source characteristics of the January 19, 1969, intermediate depth earthquake north of Hokkaido in the framework of slab-tearing, which for the December 6, 1978 event has been well documented by previous studies. We use a least-squares body wave inversion technique, and find that its focal mechanism is comparable to the 1978 event. To understand the cause of these earthquakes, which in the case of the 1978 event occurred on a vertical tear fault but does not represent hinge faulting, we examine the available International Seismological Centre [ISC] hypocenters and Harvard centroid-moment tensor [CMT] solutions to determine the state of stress, and lateral structure and segmentation in the Kuril and northern Honshu slabs. These data are evaluated in the framework of two models. Model (A) requires the subducting slab at the Hokkaido corner to maintain surface area. Model (B) requires slab subduction to be dominated by gravity, with material subducting in the down-dip direction. The distribution of ICS hypocenters shows a gap in deep seismicity down-dip of the Hokkaido corner, supporting model (B). From the CMT data set we find that three types of earthquake focal mechanisms occur. The first (type A) represents dip-slip mechanisms consistent with down-dip tension or compression in the slab in a direction normal to the strike of the trench. These events occur throughout the Honshu and Kuril slabs with focal mechanisms beneath Hokkaido showing NNW plungingP andT axes consistent with the local slab geometry. The second (type B) occurs primarily at depths over 300 km in the southern part of the Kuril slab with a few events in the northern end of the Honshu deep seismicity. These earthquakes have focal mechanisms with P axes oriented roughly E-W, highly oblique to the direction of compression found in the type A events, with which they are spatially interspersed. The third (type C) group of earthquakes are those events which do not fit in either of the first two groups and consist of either strike-slip focal mechanisms, such as the tearing events, or oddly oriented focal mechanisms. Examination of the stress axes orientations for these three types reveals that the compressional axes of the type C events are consistent with those of type B. The slab tearing events are just differential motion reflecting the E-W compressive states of stress which is responsible for the type B family of events. There is no need to invoke down-dip extension which does not fit the slab geometry. We conclude that these two states of stress can be explained as follows: 1) The type A events and the seismicity distribution support model (B). 2) The type B and C events upport model (A). The solution is that the slab subducts according to model (B), but the flow in the mantle maintains a different trajectory, possibly induced by the plate motions, which produces the second state of E-W compressive stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号