首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   12篇
测绘学   2篇
大气科学   8篇
地球物理   91篇
地质学   102篇
海洋学   7篇
天文学   7篇
综合类   1篇
自然地理   29篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   15篇
  2013年   9篇
  2012年   6篇
  2011年   15篇
  2010年   12篇
  2009年   14篇
  2008年   10篇
  2007年   12篇
  2006年   17篇
  2005年   12篇
  2004年   16篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1973年   2篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1937年   1篇
排序方式: 共有247条查询结果,搜索用时 31 毫秒
1.

This paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.

  相似文献   
2.
The mechanical properties of elastomers can change significantly due to air temperature variations. In particular, prolonged exposure to subzero temperatures can result in rubber crystallization, with a considerable increase in the shear stiffness of the material. As a result, the seismic response of structures with elastomeric isolators can be strongly influenced by air temperature. Current seismic codes, indeed, require an upper and lower bound analysis, using suitable modification factors, to account for the changes in the cyclic behavior of elastomeric isolators due to air temperature variations. In this study, the sensitivity of the cyclic behavior of elastomeric isolators to air temperature variations is investigated based on the experimental results of an extensive test program on six different elastomeric compounds for seismic isolators, characterized by a shear modulus ranging from 0.5 to 1.2 MPa at 100% shear strain and 20°C. The cyclic tests have been performed on small-size specimens, subjected to shear strain amplitudes and frequency of loading typical for elastomeric seismic isolators, at seven different air temperatures, ranging from 40 to −20°C. The effects of rubber crystallization due to prolonged exposure to low-temperatures have been also investigated. A finite element model for the evaluation of the temperature contour map inside a full-size elastomeric isolator exposed to low air temperatures has been also developed. In the paper, the experimental outcomes are compared with the modification factors provided by the current seismic codes to account for the temperature effects on the mechanical properties of elastomeric isolators.  相似文献   
3.
4.
A multi‐method approach (palaeothermal and thermochronological analyses; thermal modelling) is applied to reconstruct the exhumation history of the Altotiberina Fault (ATF), a representative example of crustal‐scale active low‐angle normal faulting in the Northern Apennines (Italy). Thermal maturity and thermochronological data yield similar burial histories but different exhumation patterns for the sedimentary successions in the hangingwall and the footwall of the ATF. Since 3.8 Ma, the ATF footwall has exhumed at rates of 0.90 mm a?1. Exhumation led to bending and deactivation of the ATF uppermost portion as a result of tectonic unloading and isostatic adjustment, followed by migration of extension and the development of a set of domino‐like, east‐dipping normal faults, rooting on the buried portion of the ATF. ATF activity and isostatic rebound exhumed Triassic rock units from depths of about 4 km. We suggest that isostatic instability is accommodated at shallow crustal levels, in a similar way to what is observed on larger structures at mid‐low crustal levels.  相似文献   
5.
Karst systems provide water for domestic and industrial uses and for generating hydropower, but they can also create fluvial hazards, such as upstream back‐flooding and downstream karst flash‐flood events. However, these hazards are difficult to foresee due to the complex recharge‐discharge processes as well as the lack of information on the inside of the system, which has often not been completely surveyed by speleologists or explored by boreholes. To overcome these difficulties, hydro‐chemical data from the monitoring system in the Middle Bussento Karst System (MBSKS), one of the first Experimental Karst Systems in southern Italy, were recorded and previously discussed. Based on shared background in flood karst hydraulic modeling, this paper describes the conceptual premises and rationale of a general‐purpose hydraulic model that is suitable both for the MBSKS and for other Mediterranean, multi‐recharge, mature, conduit‐dominated karst systems. To test the reliability of the model, simulations of time–space behavior and response are performed using natural and artificial flood pulses “as tracers”, considering a “pulse” as a significant variation in water quantity and/or quality. The results of the model explain the interactions between allogenic, autogenic, and anthropogenic recharges from differentiated sources and phreatic conduit systems. These results also clarify the overall response of karst springs at typical time scales of flood pulses. Table acronym name  相似文献   
6.
Reflection tomography is the industry standard tool for velocity model building, but it is also an ill‐posed inverse problem as its solution is not unique. The usual way to obtain an acceptable result is to regularize tomography by feeding the inversion with some a priori information. The simplest regularization forces the solution to be smooth, implicitly assuming that seismic velocity exhibits some degree of spatial correlation. However, velocity is a rock property; thus, the geometry and structure of rock formations should drive correlation in velocity depth models. This observation calls for constraints driven by geological models. In this work, we present a set of structural constraints that feed reflection tomography with geometrical information. These constraints impose the desired characteristics (flatness, shape, position, etc.) on imaged reflectors but act on the velocity update. Failure to respect the constraints indicates either velocity inaccuracies or wrong assumptions concerning the constraints. Reflection tomography with structural constraints is a flexible framework that can be specialized in order to achieve different goals: among others, to flatten the base of salt bodies or detachment surfaces, to recover the horizontalness of oil–water contacts, or to impose the co‐location of the same imaged horizon between PP and PS images. The straightforward application of structural constraints is that of regularizing tomography through geological information, particularly at the latest stages of the depth imaging workflow, when the depth migration structural setting reached a consistent geological interpretation. Structural constraints are also useful in minimizing the well‐to‐seismic mis‐ties. Moreover, they can be used as a tool to check the consistency of interpreters' hypothesis with seismic data. Indeed, inversion with structural constraints will preserve image focusing only if the interpreters' insights are consistent with the data. Results from synthetic and real data demonstrate the effectiveness of reflection tomography with structural constraints.  相似文献   
7.
8.
Terra Nova, 22, 390–395, 2010 Abstract We present the results of coupled analogue and numerical models that provide new insights into the relationships between volcanoes and thrusts. The effects of both upper‐crustal magma chambers and the load of volcanoes on the geometry of thrust systems were investigated. Analogue modelling points to a strong influence exerted by a magma chamber on thrust geometry, which, as suggested by the numerical models used to rationalize these results, is related to the stress redistribution around the weak heterogeneity. The low‐viscosity body below a volcanic edifice localizes compressional deformation and causes a curvature of the thrusts towards the magma chamber, opposite to the direction of tectonic transport. In these conditions, the volcanic load has a negligible effect on the structural geometry. These results are in contrast with those of previous studies, where intrusions or the load of major volcanoes generated a curvature of the thrusts away from volcanic edifices in the direction of tectonic transport.  相似文献   
9.
10.
The results of eight sets of repeated observations on the vertical variations of the chlorophyll maximum layer in a shallow lagoon during a red tide show that these were more frequently hydrologically induced, rather than due to active vertical migrations of the red tide-forming organism. These results are discussed and compared to those existing in the literature, with special regard to the role of light and nitrogen in conditioning vertical migrations in red tide-forming dinoflagellates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号