首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   63篇
  国内免费   59篇
测绘学   3篇
大气科学   28篇
地球物理   70篇
地质学   367篇
海洋学   30篇
天文学   10篇
综合类   10篇
自然地理   124篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   12篇
  2020年   14篇
  2019年   19篇
  2018年   8篇
  2017年   23篇
  2016年   20篇
  2015年   23篇
  2014年   31篇
  2013年   29篇
  2012年   14篇
  2011年   37篇
  2010年   30篇
  2009年   38篇
  2008年   55篇
  2007年   37篇
  2006年   43篇
  2005年   36篇
  2004年   18篇
  2003年   15篇
  2002年   15篇
  2001年   12篇
  2000年   13篇
  1999年   9篇
  1998年   11篇
  1997年   11篇
  1996年   6篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
排序方式: 共有642条查询结果,搜索用时 468 毫秒
71.
Recent improvements in understanding glacial extents and chronologies in the Wasatch and Uinta Mountains and other mountain ranges in the western U.S. call for a more detailed approach to using glacier reconstructions to infer paleoclimates than commonly applied AAR-ELA-ÄT methods. A coupled 2-D mass balance and ice-flow numerical modeling approach developed by [Plummer, M.A., Phillips, F.M., 2003. A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews 22, 1389–1406] allows exploration of the combined effects of temperature, precipitation, shortwave radiation and many secondary parameters on past ice extents in alpine settings. We apply this approach to the Little Cottonwood Canyon in the Wasatch Mountains and the Lake Fork and Yellowstone Canyons in the south-central Uinta Mountains. Results of modeling experiments indicate that the Little Cottonwood glacier required more precipitation during the local Last Glacial Maximum (LGM) than glaciers in the Uinta Mountains, assuming lapse rates were similar to modern. Model results suggest that if temperatures in the Wasatch Mountains and Uinta Mountains were  6 °C to 7 °C colder than modern, corresponding precipitation changes were  3 to 2× modern in Little Cottonwood Canyon and  2 to 1× modern in Lake Fork and Yellowstone Canyons. Greater amounts of precipitation in the Little Cottonwood Canyon likely reflect moisture derived from the surface of Lake Bonneville, and the lake may have also affected the mass balance of glaciers in the Uinta Mountains.  相似文献   
72.
To begin exploring the underlying mechanisms that couple vegetation to cloud formation processes, we derive the lifting condensation level (LCL) to estimate cumulus cloud base height. Using a fully coupled land–ocean–atmosphere general circulation model (HadCM3LC), we investigate Amazonian forest feedbacks on cloud formation over three geological periods; modern-day (a.d. 1970–1990), the last glacial maximum (LGM; 21 kya), and under a future climate scenario (IS92a; a.d. 2070–2090). Results indicate that for both past and future climate scenarios, LCL is higher relative to modern-day. Statistical analyses indicate that the 800 m increase in LCL during the LGM is related primarily to the drier atmosphere promoted by lower tropical sea surface temperatures. In contrast, the predicted 1,000 m increase in LCL in the future scenario is the result of a large increase in surface temperature and reduced vegetation cover.  相似文献   
73.
74.
Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean–atmosphere–sea ice model ECBILT-CLIO and force it with freshwater input into the North Atlantic to simulate abrupt glacial climate events, which we use as analogues for D-O events. We focus our analysis on the Northern Hemisphere. The simulated events show large differences in the regional and seasonal distribution of the temperature and precipitation changes. While the temperature changes in high northern latitudes and in the North Atlantic region are dominated by winter changes, the largest temperature increases in most other land regions are seen in spring. Smallest changes over land are found during the summer months. Our model simulations also demonstrate that the temperature and precipitation change patterns for different intensifications of the Atlantic meridional overturning circulation are not linear. The extent of the transitions varies, and local non-linearities influence the amplitude of the annual mean response as well as the response in different seasons. Implications for the interpretation of paleo-records are discussed.  相似文献   
75.
Granulometric analysis of nineteen sediment samples has been carried out for their statistical and textural parameters. The samples are collected from the northern and southern margins of Schirmacher Oasis extending below the polar ice sheet and grading to coastal area respectively and main rocky land of Schirmacher including lakes. The analysis shows that most of the sediments are of medium grain size and fall in poor to very poor sorted category. An attempt has been made to interpret the depositional set-up by plotting the scatter patterns between various textural parameters, including C-M plot and arithmetic log-probability curves. The influence of physical parameters viz. low to high velocity winds, ice and meltwater on sediment characteristics has been discussed.  相似文献   
76.
Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry   总被引:2,自引:0,他引:2  
Fennoscandia is a key region for studying effects of glacial isostatic adjustment. The associated mass variations can be detected by the Gravity Recovery and Climate Experiment (GRACE) satellite mission, which observes the Earth's gravity field since April 2002, as well as by absolute gravimetry field campaigns. Since 2003, annual absolute gravity (AG) measurements have been performed in Fennoscandia by the Institut für Erdmessung (IfE, Institute of Geodesy) of the Leibniz Universität Hannover, Germany, within a multi-national cooperation. This offers a unique opportunity for validation and evaluation of the GRACE results. In this preliminary study, the GRACE results are compared to secular gravity changes based on the surveys from 2004 to 2007 with the FG5-220 gravimeter of the IfE.The results from GRACE monthly solutions provided by different analysis centres show temporal gravity variations in Fennoscandia. The included secular variations are in good agreement with former studies. The uplift centre is located west of the Bothnian Bay, the whole uplift area comprises Northern Europe. Nevertheless, the differences between the GRACE solutions are larger than expected and the different centre-specific processing techniques have a very strong effect on possible interpretations of GRACE results. The comparison of GRACE to the AG measurements reveals that the determined trends fit well with results from GRACE at selected stations, especially for the solution provided by the GFZ. Variations of land hydrology clearly influence results from GRACE and the AG measurements.  相似文献   
77.
The sedimentary sequence through the Hemingbrough Formation exposed at two sites in the central part of the Vale of York, south of the Escrick moraine ridge, is described and used to reconstruct the palaeoenvironmental history of Glacial Lake Humber. Interbedded wave ripples and laminated silts and clays at both sites indicate that Lake Humber was characterised by fluctuating water levels, often no deeper than wave base. Optically stimulated luminescence ages of 21.0 ± 1.9, 21.9 ± 2.0, and 24.1 ± 2.2 kyr returned from two wave-rippled sandy beds within the glaciolacustrine sequence at Hemingbrough, c. 10 km south of the Escrick moraine ridge, provide the first direct chronological determination for the low-level phase of Lake Humber. As these beds are principally attributed to glacial meltwater emanating from the Vale of York ice lobe of the British Ice Sheet, when its margin was at or near the Escrick moraine ridge, this corroborates the interpretation that this ridge marks the LGM ice limit.  相似文献   
78.
Early and Middle Pleistocene landscapes of eastern England   总被引:1,自引:1,他引:0  
This paper reviews the pattern of climate and environmental change in eastern England over the period of the Early and Middle Pleistocene, focussing especially upon northern East Anglia. Particular attention is given to the climate and tectonics that have brought about these changes and the distinctive geology, topography and biology that has developed. Throughout, an attempt is made to describe the new models that have been proposed for the Early and Middle Pleistocene of eastern England, and explain the reasons for these changes. The Early Pleistocene experienced relatively high insulation and relatively low magnitude climatic change and is represented primarily by non-climatically forced processes in the form of tidal current- and wave-activity which formed shallow marine deposits. It is possible to recognise a tectonic control in the distribution of deposits of this age because the surface processes do not have the power to remove this signature. The early Middle Pleistocene was dominated by higher magnitude climatic change involving, occasionally, climatic extremes that ranged from permafrost to mediterranean. The landscape at this time was dominated by the behaviour of major rivers (Thames, Bytham, Ancaster) and extensive coastal activity. In the latter part of the early Middle Pleistocene and the Late Middle Pleistocene the climate experienced major changes which resulted in periods of lowland glaciation and short intervals when the climate was warmer than the present. Details of tectonic activity are difficult to identify because they are removed by powerful surface processes, but it is possible to infer uplift focussed on the major interfluves of central England and subsidence in the North Seas basin. In the areas of glaciation the landscape changed radically from an organised terrain dominated by large rivers and extensive shallow coastal zones to complex, with small valleys, disrupted drainage and often discontinuous river, slope and coastal deposits. Likewise the switching off of the North Sea Delta and the opening of the Strait of Dover, separating Britain from continental Europe can be attributed to the onset of lowland glaciation. The case is made that eastern England was glaciated four times during the Middle Pleistocene: during MIS 16, 12, 10 and 6, and attention is given to recent evidence contradicting this model. Over the period of the Middle Pleistocene there is evidence for high biomass production occurring over short intervals coinciding with the climatic optima of MIS 19, 17, 15, 13, 11, and 7c, 7a and during most of these warmer periods, extending back to c. 750 ka (MIS 19/17), there is evidence in the region for the brief appearance of humans.  相似文献   
79.
At least three sets of moraines mark distinct glacial stands since the last glacial maximum (LGM) in the Three Sisters region of the Oregon Cascade Range. The oldest stand predates 8.1 ka (defined here as post-LGM), followed by a second between ∼ 2 and 8 ka (Neoglacial) and a third from the Little Ice Age (LIA) advance of the last 300 years. The post-LGM equilibrium line altitudes were 260 ± 100 m lower than that of modern glaciers, requiring 23 ± 9% increased winter snowfall and 1.4 ± 0.5°C cooler summer temperatures than at present. The LIA advance had equilibrium line altitudes 110 ± 40 m lower than at present, implying 10 ± 4% greater winter snowfall and 0.6 ± 0.2°C cooler summer temperatures.  相似文献   
80.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号