首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21227篇
  免费   3805篇
  国内免费   5310篇
测绘学   2119篇
大气科学   3520篇
地球物理   5632篇
地质学   9478篇
海洋学   3609篇
天文学   1411篇
综合类   1589篇
自然地理   2984篇
  2024年   72篇
  2023年   238篇
  2022年   648篇
  2021年   764篇
  2020年   999篇
  2019年   971篇
  2018年   872篇
  2017年   1024篇
  2016年   1000篇
  2015年   1148篇
  2014年   1259篇
  2013年   1560篇
  2012年   1286篇
  2011年   1337篇
  2010年   1131篇
  2009年   1315篇
  2008年   1476篇
  2007年   1592篇
  2006年   1612篇
  2005年   1340篇
  2004年   1156篇
  2003年   977篇
  2002年   902篇
  2001年   709篇
  2000年   823篇
  1999年   800篇
  1998年   632篇
  1997年   482篇
  1996年   405篇
  1995年   316篇
  1994年   283篇
  1993年   276篇
  1992年   232篇
  1991年   158篇
  1990年   120篇
  1989年   118篇
  1988年   84篇
  1987年   52篇
  1986年   48篇
  1985年   27篇
  1984年   21篇
  1983年   9篇
  1982年   10篇
  1981年   8篇
  1980年   10篇
  1979年   2篇
  1978年   18篇
  1977年   7篇
  1954年   7篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
91.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   
92.
A calculation formula on spherical pattern of Qinghai-Tibet plateau moving model is established. Tibet massif moves norward by east in speed of 28 mm/a, Ganshu-Qinghai massif moves to northeast in speed of 15 mm/a, Qomolangma Feng moves northward by a few east in speed of 35 ~42 mm/a. The low latitude perimeter is longer than the nigh latitude perimeter. When the Tibet massif moves northward, its latitude perimeter must be contracted and the Tibet massif must move eastward by Coriolis. Coriolis force is inertial in earth rotation. It makes the fall body turning to east and the rising block turning westward. In the Northern Hemisphere, it makes the northward body turning to east and the southward block turning to west.This is the reason why the tectonic zones of western Pacific are different from those of eastern Pacific.  相似文献   
93.
1 INTRODUCTION One of the most intriguing phenomena in the late Neoproterozoic (~750 to 543 Ma) is the globa occurrence of thin carbonates that directly overlie glacial deposits in almost every continent (Kennedy 1996; Hoffman et al., 1998; Hoffman and Schrag 2002; Brasier and Shields, 2000; James et al., 2001 Jiang et al., 2003; Nogueira et al., 2003). These “cap carbonates”, commonly several to tens of meters thick, have attracted enormous interests because o their unusually negati…  相似文献   
94.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
95.
Free radical scavenging abilities of polypeptide from Chlamys farreri   总被引:1,自引:0,他引:1  
1 INTRODUCTION Active oxygen free radicals can damage cell structure, even kill the cells, causing aging and cer- tain serious diseases (Bors et al., 1989). Usually, the production and scavenging of active oxygen free radicals are in balance in healthy hu…  相似文献   
96.
《Mathematical Geology》1997,29(5):653-668
Filtering either through the electronics of an instrument or through digital procedure is performed routinely on geophysical data. When velocity fluctuations are measured in turbulent flows using electromagnetic current meters (ECMs), a builtin lowpass Butterworth filter of order n usually attenuates fluctuations at high frequencies. However, the effects of this filter may not be acknowledged in turbulence studies, thus impeding comparisons between data collected with different ECMs. This paper explores the implications of the filters on the characteristics of velocity signals, mainly on variance, power spectra, and correlation analyses. Variance losses resulting from filtering can be important but will vary with the order n of the Butterworth filter, decreasing as n increases. Knowing the filter response, it is possible to reconstruct the original signal spectrum to evaluate the effect of filtering on variance and to allow comparisons between data collected with different instruments. The autocorrelation function also is affected by filtering which increases the value of the coefficients in the first lags, resulting in an overestimation of the integral length scale of coherent structures. These important effects add to those related to size and shape differences in ECM sensors and must be taken into account in comparative studies.  相似文献   
97.
贵州和四川盆地云量的气候研究   总被引:1,自引:1,他引:0  
贵州和四川盆地是我国云量最多的地区,素有“天无三日晴”和“蜀犬吠日”之说,盆地西缘的雅安古时还有“雅州天漏”的谚语。从全球日照百分率分布推知,川黔地区也是世界上天气最阴沉的地区之一。川黔之阴一向为国内外气象界所注意,本文根据1951—1980  相似文献   
98.
Granular carbonate deposits of Late Pleistocene to Early Holocene age, commonly referred to as ‘miliolite limestone’, occur in a linear belt, parallel to the southern coast of Saurashtra, India. In the present study area these carbonate deposits are found in select valleys between ridges and mounds of pyroclastic material present in the Deccan trap plateau. Two different depositional histories have been proposed for these sediments. The presence of marine bioclasts led to the postulation of a marine origin for these deposits. The second school of thought propounded redeposition of the coastal sediments by aeolian processes. Although a few features could not be explained by the proposed aeolian model, critical comparison of these two views favoured the aeolian origin. The mode of occurrence, lithological and structural attributes, and microscopic evidence presented here, also support a possible aeolian origin for these deposits. Experimental observation indicates that these carbonate aeolianites represent backflow deposits, which accumulated because of the flow separation caused by the presence of topographic highs. The conspicuous concave‐up geometry of the deposit conformed to the shape of the separation bulb. In view of the inferred depositional mechanism, the disposition of the deposits and the signature of the palaeoflow direction suggest that the carbonate particles were derived from the north‐western coast of Saurashtra by strong south‐easterly winds. Massive granular carbonates with outsized basement clasts appear to be the product of avalanching of granular material from the higher contours because of oversteepening of the primary deposit.  相似文献   
99.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
100.
The primary occurrence of ruby in the Mogok area, northern Myanmar is exclusively found in marble along with spinel–forsterite-bearing marble and phlogopite–graphite marble. These marble units are enclosed within banded biotite–garnet–sillimanite–oligoclase gneisses. Samples of these marbles collected for C–O stable isotope analysis show two trends of δ13C–δ18O variation resulting most likely from fluid–rock interactions. Ruby-bearing marble and phlogopite–graphite marble follow a trend with coupled C–O depletion, whereas spinel–forsterite-bearing marble follows a δ18O depletion trend with relatively constant δ13C values. Ruby formation might have resulted from CO2-rich fluid–rock interaction, while spinel–forsterite-bearing marble was genetically related to CO2-poor fluid–rock interaction. Both fluids may have arisen from external sources. Based on graphite Raman spectral thermometry, the estimated temperature for phlogopite–graphite marble, and probably ruby-bearing marble, was lower than 607 °C, and for spinel–forsterite-bearing marble, lower than 710 °C. Contrasting C/O diffusion between graphite/ruby/spinel/forsterite and calcite, local variations of isotopic compositions of newly formed minerals as a result of non-pervasive fluid infiltration, and open-system isotopic disturbance during cooling may have affected C-/O-isotopic fractionations between minerals. The estimated high formation temperatures for ruby and spinel/forsterite imply that the parental fluids may have been related to nearby igneous intrusions and/or metamorphic processes. Whether these two types of fluid were genetically related is unclear based on the present data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号