首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   20篇
  国内免费   34篇
测绘学   1篇
大气科学   32篇
地球物理   39篇
地质学   99篇
海洋学   45篇
天文学   10篇
综合类   2篇
自然地理   13篇
  2024年   1篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2019年   7篇
  2018年   1篇
  2017年   10篇
  2016年   14篇
  2015年   14篇
  2014年   13篇
  2013年   5篇
  2012年   3篇
  2011年   20篇
  2010年   7篇
  2009年   23篇
  2008年   13篇
  2007年   19篇
  2006年   8篇
  2005年   11篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1978年   2篇
排序方式: 共有241条查询结果,搜索用时 156 毫秒
131.
Blake Ridge hosts an extensive gas hydrate system where escaping CH4 is consumed through anaerobic oxidation of methane (AOM) at a sulfate–methane transition (SMT) in shallow sediment. Previous geochemical work on ridge crest sediment has documented Ba fronts above the SMT, and has suggested that these horizons can be used to constrain the evolution of the SMT and AOM over time. We expand on this concept and further test it by determining the labile Ba contents of sediment and the dissolved Ba2+ concentrations of pore waters at four ODP sites on Blake Ridge (on the crest at Sites 994, 995 and 997, and on the southern flank at Site 1059). Labile Ba contents are fairly low at all four sites (0.44 and 1.32 mmol/kg), except within 3 m above the SMT at Sites 994, 995 and 997, where they typically exceed 1.24 mmol/kg and can reach 11.3 mmol/kg. These Ba fronts have a diagenetic origin, and SEM analyses show them to be composed of microcrystalline barite. Site 1059 lacks a prominent Ba front. The lowest labile Ba contents generally underlie the Ba fronts and correlate to the base of the SMT. Dissolved Ba2+ concentrations are low (< 1–4 μM) from the seafloor to within 2 m above the main Ba front. Below this depth, they rapidly increase at Sites 994, 995, and 1059, reaching peak concentrations (to 57 μM) at the base of the SMT. By contrast, a rapid rise in dissolved Ba2+ is not observed at Site 997. Dissolved Ba2+ concentrations are only moderately high (10–25 μM) below the SMT at all four sites. Collectively, this information supports a diagenetic model where barite passing into the SMT dissolves, and some of the dissolved Ba2+ then migrates up to form an authigenic barite peak. The contrasting signatures at the different sites indicate non-steady-state differences in the overall process. The size of the peaks on the crest of Blake Ridge necessitates that the recycling of Ba across the SMT has been operating at the current sub-bottom depths for > 100 kyr. Thus, CH4 escaping through the AOM has likely been fairly constant over this time. It is possible that the SMT is currently rising toward the seafloor at Site 1059.  相似文献   
132.
甲烷作为油气生产中的主要气态污染物和增温潜势较强的一类温室气体,其逃逸排放检测与核算是中国油气行业温室气体控制与减排过程中的首要问题。通过比较国内外油气行业逃逸甲烷排放核算方法,以及总结当前国内外油气田现场开展的甲烷排放检测研究,对油气行业企业级温室气体清单编制提出了建议。在甲烷逃逸排放核算方面,由于生产过程、工艺等出现的变化,建议加快建立符合我国油气生产实际情况的排放因子,纳入放空气燃烧的周期变化、绿色完井措施使用、陆上/海上油气生产等内容,鼓励油气生产企业通过设备组件统计、现场实测等方式进行排放因子更新。针对逃逸甲烷现场检测数据不足,影响核算结果对比的现状,在开展油气生产过程现场检测时,建议自下而上与自上而下检测方法相结合,保证检测结果的可验证性、可重复性,并谨慎看待针对部分油气生产区块的检测结果进行大尺度区域甲烷逃逸排放量的推算结果。  相似文献   
133.
How natural gas hydrates nucleate and grow is a crucial scientific question. The research on it will help solve practical problems encountered in hydrate accumulation, development, and utilization of hydrate related technology. Due to its limitations on both spatial and temporal dimensions, experiment cannot fully explain this issue on a micro-scale. With the development of computer technology, molecular simulation has been widely used in the study of hydrate formation because it can observe the nucleation and growth process of hydrates at the molecular level. This review will assess the recent progresses in molecular dynamics simulation of hydrate nucleation and growth, as well as the enlightening significance of these developments in hydrate applications. At the same time, combined with the problems encountered in recent hydrate trial mining and applications, some potential directions for molecular simulation in the research of hydrate nucleation and growth are proposed, and the future of molecular simulation research on hydrate nucleation and growth is prospected.©2022 China Geology Editorial Office.  相似文献   
134.
Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate. In this study, low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples. Results show that the signal intensity of T2 distribution isn’t affected by sediment type and pore pressure, but is affected by temperature. The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T2 distribution. The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media. The water conversion rate fluctuates during the hydrate formation. The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media. For the fine sand sample, the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate, but causes a large water-sand contact area resulting in a low water conversion ratio (Cw=96.2%). The clay can reduce the water conversion rate and ratio, especially montmorillonite (Cw=95.8%). The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water.©2022 China Geology Editorial Office.  相似文献   
135.
Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks. Four sites had cored using pressure and non-pressure methods during the gas hydrates drilling project (GMGS4) expedition at Shenhu Area, north slope of the South China Sea. Sediments were cored above, below, and through the gas-hydrate-bearing zone guided with logging-while-drilling analysis results. Gamma density and P-wave velocity were measured in each pressure core before subsampling. Methane hydrates volumes in total 62 samples were calculated from the moles of excess methane collected during depressurization experiments. The concentration of methane hydrates ranged from 0.3% to 32.3%. The concentrations of pore fluid (25.44% to 68.82%) and sediments (23.63% to 54.28%) were calculated from the gamma density. The regression models of P-wave velocity were derived and compared with a global empirical equation derived from shallow, unconsolidated sediments data. The results were close to the global trend when the fluid concentration is larger than the critical porosity. It is concluded that the dominant factor of P-wave velocity in hydrate-bearing marine sediments is the presence of the hydrate. Methane hydrates can reduce the fluid concentration by discharging the pore fluid and occupying the original pore space of sediments after its formation.©2022 China Geology Editorial Office.  相似文献   
136.
Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to-volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment–water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.  相似文献   
137.
大气甲烷浓度变化的源汇因素模拟研究进展   总被引:2,自引:1,他引:1  
从甲烷大气化学过程、传输模式和反向模拟机理等方面综述了大气甲烷浓度变化及其源汇研究的主要进展及存在的问题。基于数据同化算法的反向模拟能有效降低全球及国家尺度甲烷排放估计的不确定性。但在具体的算法实施中,先验的甲烷排放估计和地面站大气甲烷浓度测定的不确定性量化仍然主要是经验性的,缺乏严格和系统性的量化算法。相对于有限的地面站测定,基于卫星平台的大气甲烷浓度变化监测数据极大地提高了数据的空间覆盖度,进一步促进了反向模拟的应用。当前的反向模拟研究在全球尺度上确认了自然湿地甲烷排放对大气甲烷浓度年际波动的决定性作用;在国家尺度上,反向模拟在国家温室气体清单的"可核查"方面也有广泛的应用前景。  相似文献   
138.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl, and HCO3, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.  相似文献   
139.
Methane emissions from a longwall ventilation system are an important indicator of how much methane a particular mine is producing and how much air should be provided to keep the methane levels under statutory limits. Knowing the amount of ventilation methane emission is also important for environmental considerations and for identifying opportunities to capture and utilize the methane for energy production.Prediction of methane emissions before mining is difficult since it depends on a number of geological, geographical, and operational factors. This study proposes a principle component analysis (PCA) and artificial neural network (ANN)-based approach to predict the ventilation methane emission rates of U.S. longwall mines.Ventilation emission data obtained from 63 longwall mines in 10 states for the years between 1985 and 2005 were combined with corresponding coalbed properties, geographical information, and longwall operation parameters. The compiled database resulted in 17 parameters that potentially impacted emissions. PCA was used to determine those variables that most influenced ventilation emissions and were considered for further predictive modeling using ANN. Different combinations of variables in the data set and network structures were used for network training and testing to achieve minimum mean square errors and high correlations between measurements and predictions. The resultant ANN model using nine main input variables was superior to multilinear and second-order non-linear models for predicting the new data. The ANN model predicted methane emissions with high accuracy. It is concluded that the model can be used as a predictive tool since it includes those factors that influence longwall ventilation emission rates.  相似文献   
140.
王力  王可勇  葛文春  金巍  马志红 《岩石学报》2008,24(9):2171-2178
营城组火山岩是松辽盆地深层油气藏的主要储层之一,本次研究我们在该组火山岩中首次发现了较多的纯CH4包裹体,这类包裹体主要以原生及次生形式产于流纹岩石英斑晶及玄武岩气孔充填矿物石英之中。综合分析认为,伴随营城组火山岩喷发活动,产生了较多的无机成因的CH4等气体,它们连同可能存在的其它有机成因的烃类气体一起,沿流纹岩中的微裂隙及玄武岩中的气孔等构造运移、聚集,从而形成深层火山岩储层中的富CH4天然气藏。因此,营城组火山岩不仅仅作为被动的油气储层存在,而且该期火山活动可能也为深层油气成藏提供了至少部分CH4等气体的来源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号