首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2040篇
  免费   343篇
  国内免费   796篇
测绘学   20篇
大气科学   80篇
地球物理   320篇
地质学   2225篇
海洋学   44篇
天文学   67篇
综合类   63篇
自然地理   360篇
  2024年   18篇
  2023年   43篇
  2022年   92篇
  2021年   115篇
  2020年   158篇
  2019年   150篇
  2018年   169篇
  2017年   146篇
  2016年   120篇
  2015年   133篇
  2014年   127篇
  2013年   196篇
  2012年   148篇
  2011年   112篇
  2010年   117篇
  2009年   131篇
  2008年   130篇
  2007年   133篇
  2006年   109篇
  2005年   102篇
  2004年   114篇
  2003年   92篇
  2002年   75篇
  2001年   56篇
  2000年   51篇
  1999年   32篇
  1998年   53篇
  1997年   45篇
  1996年   30篇
  1995年   31篇
  1994年   25篇
  1993年   32篇
  1992年   17篇
  1991年   12篇
  1990年   22篇
  1989年   15篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1954年   1篇
排序方式: 共有3179条查询结果,搜索用时 281 毫秒
141.
中亚造山带东段内蒙古兴安盟扎赉特旗地区作为二连-贺根山断裂的东延部分,蕴含了古亚洲洋俯冲消亡过程及洋-陆转换的关键信息,然而对于该区蛇绿构造混杂岩的研究相对薄弱,成为制约古亚洲洋构造演化研究的瓶颈。本文在扎赉特旗沙巴尔吐地区发现了蛇绿构造混杂岩、与岛弧环境相关的英云闪长岩-奥长花岗岩和碱长花岗岩组合。对蛇绿构造混杂岩中超镁铁质岩和碱长花岗岩开展LA-ICP-MS锆石U-Pb测年显示其年龄分别为279.2±3.3 Ma和278.2±1.7 Ma,表明其形成于中二叠世早期。超镁铁质岩含有低的SiO_2含量(43.54%~46.38%),低Na_2O和K_2O而富MgO,Mg~#为89~94,显示亏损地幔-过渡型地幔特征,起源于约70%的石榴石二辉橄榄岩的部分熔融,属俯冲型(SSZ)蛇绿岩。英云闪长岩-奥长花岗岩属准铝质钙碱性系列,高Al_2O_3含量,相对富钠贫钾,高Sr(平均600.00×10~(-6))、低Y(平均12.50×10~(-6))和Yb(平均1.18×10~(-6)),具典型。型埃达克岩特征,是俯冲环境下低钾洋壳玄武岩部分熔融的产物。碱长花岗岩富硅和碱,低铁和镁,具有高的正εHf(t)值(平均+18.9),位于亏损地幔线之上,一阶段、二阶段模式年龄基本近于或者小于岩石结晶年龄,起源于岛弧型的新生地壳。沙巴尔吐蛇绿构造混杂岩代表中二叠世早期洋内俯冲的产物,表明古亚洲洋在中二叠世早期未闭合,仍存在持续性的俯冲活动,闭合时间至少应在中二叠世之后。  相似文献   
142.
西秦岭造山带印支早期的构造环境仍存在较多争论,选择西秦岭将其那梁杂岩体进行详细的年代学、岩石学及地球化学分析,以期对该科学问题进行深入探讨。将其那梁杂岩体由石英闪长岩和花岗斑岩组成,石英闪长岩LA-ICP-MS锆石U-Pb年龄为(240.0±1.5) Ma,形成时代为中三叠世,属于早印支期。将其那梁杂岩体具有富钾(K2O=3.09%~3.54%)、富碱(K2O+Na2O=6.44%~7.20%)和过铝质(A/CNK=1.05~1.56)特征,Mg#值(54~67)较高,属于过铝质高钾钙碱性岩类。将其那梁杂岩体石英闪长岩和花岗斑岩具有相似的微量元素及稀土元素组成,轻重稀土元素分馏明显(LREE/HREE=8.19~14.63),呈右倾特征,显示无或弱负Eu异常(δEu=0.87~1.03),具有亏损Nb、Ta、Zr等高场强元素和富集Ba、Rb、Sr等大离子亲石元素的地球化学特征。岩石地球化学特征指示,将其那梁杂岩体主要源于下地壳高钾变基性岩的部分熔融,且有幔源物质参与其中。结合区域地质背景,认为将其那梁杂岩体形成于火山弧构造环境,可能与中—晚三叠世阿尼玛卿—勉略洋向北俯冲有关,反映了中—晚三叠世西秦岭地区具有活动大陆边缘的属性。  相似文献   
143.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   
144.
145.
146.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   
147.
148.
Frontier exploration in the Kuqa Depression, western China, has identified the continuous tight-sand gas accumulation in the Lower Cretaceous and Lower Jurassic as a major unconventional gas pool. However, assessment of the shale gas resource in the Kuqa Depression is new. The shale succession in the Middle–Upper Triassic comprises the Taliqike Formation (T3t), the Huangshanjie Formation (T3h) and the middle–upper Karamay Formation (T2–3k), with an average accumulated thickness of 260 m. The high-quality shale is dominated by type III kerogen with high maturity and an average original total organic carbon (TOC) of about 2.68 wt%. An improved hydrocarbon generation and expulsion model was applied to this self-contained source–reservoir system to reveal the gas generation and expulsion (intensity, efficiency and volume) characteristics of Middle–Upper Triassic source rocks. The maximum volume of shale gas in the source rocks was obtained by determining the difference between generation and expulsion volumes. The results indicate that source rocks reached the hydrocarbon expulsion threshold of 1.1% VR and the hydrocarbon generation and expulsion reached their peak at 1.0% VR and 1.28% VR, with the maximum rate of 56 mg HC/0.1% TOC and 62.8 mg HC/0.1% TOC, respectively. The volumes of gas generation and expulsion from Middle–Upper Triassic source rocks were 12.02 × 1012 m3 and 5.98 × 1012 m3, respectively, with the residual volume of 6.04 × 1012 m3, giving an average gas expulsion efficiency of 44.38% and retention efficiency of 55.62%. Based on the gas generation and expulsion characteristics, the predicted shale gas potential volume is 6.04 × 1012 m3, indicating a significant shale gas resource in the Middle–Upper Triassic in the eastern Kuqa Depression.  相似文献   
149.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   
150.
Detrital volcanic and vein quartz, accompanied by felsic volcanic debris, occur as minor constituents in the Ordovician subduction‐related mafic volcanics of the Molong Volcanic Belt. In the western province of the Molong Volcanic Belt, detrital quartz is present in the three episodes of the mafic Volcanics. Volcanic quartz occurs in allochthonous limestone blocks in the Bendigonian Hensleigh Siltstone overlying the Mitchell Formation. The second volcanic episode (the Fairbridge Volcanics) commenced after a hiatus of approximately 20 million years and lasted around 10 million years from Darriwilian to Gisbornian time. Locally derived vein quartz, volcanic quartz and felsic detritus are concentrated at the bases of autochthonous Wahringa and Yuranigh Limestone Members of the volcanics and are extensive and abundant in basal beds of the regional Eastonian limestone body that transgressed over an eroded volcanic centre at Cargo. This early Eastonian debris, deposited early in an 8 million‐year volcanic hiatus preceding the final Ordovician Bolindian volcanism, establishes a pre‐Eastonian age for mineralisation at Cargo. It is inferred that the pauses in volcanism were preceded by magmatic fractionation, intrusion and hydrothermal activity and followed by erosion, subsidence and deposition of autochthonous limestones. Minor occurrences of vein and volcanic quartz are found in Bolindian volcanogenic sediments of the third volcanic phase. It is concluded that hydrothermal vein formation (and mineralisation by inference) was associated with pauses in volcanic activity throughout the Middle to early Late Ordovician over a wide area in the western province, culminating in the mineralisation at Cargo and Copper Hill near Molong. Volcanism in the eastern province of the Molong Volcanic Belt was continuous from at least Darriwilian to latest Ordovician time. Here, detrital hydrothermal vein quartz and volcanic quartz and felsic detritus are distributed through late Middle and early Late Ordovician turbidites of the Weemalla Formation. The possible existence of cycles in the source area like those of the Fairbridge Volcanics is masked by the distal nature of these deposits. Vein formation occurred in both provinces from late Middle Ordovician to early Late Ordovician, long before the formation of the world‐class mineral deposit at Cadia associated with the latest Ordovician Cadia Monzonite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号