首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   147篇
  国内免费   325篇
测绘学   3篇
地球物理   129篇
地质学   1052篇
海洋学   39篇
天文学   2篇
综合类   33篇
自然地理   30篇
  2024年   5篇
  2023年   12篇
  2022年   17篇
  2021年   22篇
  2020年   25篇
  2019年   36篇
  2018年   35篇
  2017年   22篇
  2016年   29篇
  2015年   35篇
  2014年   43篇
  2013年   56篇
  2012年   56篇
  2011年   44篇
  2010年   26篇
  2009年   65篇
  2008年   63篇
  2007年   72篇
  2006年   58篇
  2005年   46篇
  2004年   48篇
  2003年   53篇
  2002年   34篇
  2001年   23篇
  2000年   51篇
  1999年   49篇
  1998年   32篇
  1997年   37篇
  1996年   35篇
  1995年   36篇
  1994年   27篇
  1993年   20篇
  1992年   21篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1978年   5篇
  1954年   1篇
排序方式: 共有1288条查询结果,搜索用时 15 毫秒
11.
武夷山南段前寒武纪地层分布较广。从下至上分为楼子坝群、丁屋岭组、南岩组和黄连组。过去因缺乏可靠的微古植物化石证据和同位素地质年龄资料,对其时代归属分歧颇大。为此,作者对该区的前寒武系进行了系统的微古植物取样、分析,参考最近的Nd同位素模式年龄资料,认为:楼子坝群为前震旦系,大致相当于蓟县系与青白口系;丁屋岭组为下震旦统;南岩组和黄连组为上震旦统;江西东南部的"下寒武统炭质板岩"应归入老虎塘组,属上震旦统。  相似文献   
12.
耿元生 《地质学报》2022,96(9):2955-2966
程裕淇院士是我国著名的变质岩石学家、矿床学家和前寒武纪地质学家。中国科学院学部委员(院士),中国人民政治协商会议第四届、第五届全国委员会委员,第六届、第七届全国政协常务委员会委员。程裕淇先生开拓了我国变质岩研究领域,提出了矿床成矿系列理论,发展了我国前寒武纪地质学。他在管理上积极推进地质行业的对外开放,促进国际合作交流,为建立中央直属的野战军队伍建言献策;在政协多次提案,推动了我国矿产资源法的立法和实施。  相似文献   
13.
肯尼亚Anza盆地东南部地处东非裂谷系,发育了巨厚的中—新生界沉积盖层。然而,该区域勘探程度较低,制约了对其构造体系的认识及油气勘探潜力的评价。文章基于研究区的重力异常数据,针对其构造特征的认识进行了数据处理及解释。研究结果表明,受中非剪切带右旋剪切应力的影响,研究区发育规模较大的北西向基底断裂和规模较小的北东向盖层断裂,且北东向断裂切断北西向断裂;基底深度差异大,总体呈"两凹夹一隆"的特征,凹陷区沉积了巨厚的中—新生界盖层;受北西向拉张断裂和沿构造软弱带发育的北东向断裂的控制,研究区划分为东部凹陷、中部凸起、南部隆起和西部凹陷4个构造单元,呈现"东西分带、南北分块"的构造格局。   相似文献   
14.
豫西后造山阶段存在变质核杂岩吗?   总被引:2,自引:1,他引:1  
曹高社  赵太平 《地质论评》1997,43(4):365-372
不少学者用变质核杂岩模式解释豫西造山阶段基底隆起和与之相伴的盆岭构造的构造格局。介一本区基底隆起的形态、机制、时限和地壳剥露层次均没有变质核杂岩特征与基底隆起相伴的断陷人舅地也不同于变质核杂岩模式中的半地堑。  相似文献   
15.
An assessment of the southern Betsimisaraka Suture (B.S.) of southeastern Madagascar using remote sensing and field investigation reveals a complex deformation history. Image processing of Landsat ETM+data and JERS-I Synthetic Aperture Radar (SAR) imagery was integrated with field observations of structural geology and field petrography. The southern B.S. divides the Precambrian basement rocks of Madagascar in two parts. The western part includes Proterozoic rocks whereas the eastern part is an Archean block, named the Masora block. The southern part of the B.S. includes high-grade metamorphic rocks, recording strong deformation and has mineral deposits including chromite, nickel, and emerald, characteristic of oceanic material that is compatible with a suture zone.Large-scale structural features indicate ductile deformation including three generations of folding (F1, F2, and F3) associated with dextral shearing. The first folding event (F1) shows a succession of folds with NE striking axial planes. The second folding event (F2) mainly has north–south striking axial planes and the last event (F3) is represented by mega folds that have ENE–WSW axial plane directions and have NNW and SSE contractional strain patterns. Closure of the Mozambique Ocean between two components of Gondwana sandwiched rocks of the B.S. and formed upright folds and shortening zones which produced N–S trending lineaments. Later dextral movements followed the contraction and formed NW–SE trending lineaments and N–S trending normal faults associated with dextral strike slip faults and fractures.  相似文献   
16.
The NW-trending Bucaramanga fault links, at its southern termination, with the Soapaga and Boyacá faults, which by their NW trend define an ample horsetail structure. As a result of their Neogene reactivation as reverse faults, they bound fault-related anticlines that expose the sedimentary fill of two Early Jurassic rift basins. These sediments exhibit the wedge-like geometry of rift fills related to west-facing normal faults. Their structural setting was controlled further by segmentation of the bounding faults at approximately 10 km intervals, in which each segment is separated by a transverse basement high. Isopach contours and different facies associations suggest these transverse anticlines may have separated depocenters of their adjacent subbasins, which were shaped by a slightly different subsidence history and thereby decoupled. The basin fill of the relatively narrow basin associated with the Soapaga fault is dominated by fanglomeratic successions organized in two coarsening-upward cycles. In the larger basin linked to the Boyacá fault, the sedimentary fill consists of two coarsening-upward sequences that, when fully developed, vary from floodplain to alluvial fan deposits. These Early Jurassic rift fills temporally constrain the evolution of the Bucaramanga fault, which accommodated right-lateral displacement during the early Mesozoic rift event.  相似文献   
17.
Molar tooth (MT) structures are enigmatic, contorted millimetre‐ to decimetre‐long veins and spheroids of microcrystalline calcite that formed during very early diagenesis in Precambrian sediments. MT structures in the ca 2·6 Ga Monteville Formation are 600–800 Myr older than previously reported occurrences and establish that conditions necessary for MT genesis were met locally throughout much of the Precambrian. In the Monteville Formation, MT structures were formed shallow subtidally, extending to depths near storm wave base, in shale host sediments intercalated with storm‐generated carbonate sand lenses. They are filled with microcrystalline calcite and rare pyrite. Microcrystalline calcite identical to that in MT structures fills other pore space, including porosity between grains in carbonate sand lenses, moldic porosity in sand grains, sheet cracks in columnar stromatolites, and shallow cracks on sandy bedding planes. Relationships in the Monteville Formation demonstrate that microcrystalline CaCO3 precipitated in fluid‐filled cracks and pores; microcrystalline calcite characteristics, as well as the paucity of carbonate mud in host rocks, are inconsistent with injection of lime mud as the origin of MT structures. Locally, MT cracks were filled by detrital sediment before or during precipitation. Precipitation occurred in stages, and MT CaCO3 evolved from granular cores to a rigid mass of cores with overgrowths – allowing both plastic and brittle deformation of MT structures, as well as reworking of eroded MT structures as rigid clasts and lime mud. Crystal size distributions and morphology suggest that cores precipitated through nucleation, Ostwald ripening and size‐dependent crystal growth, whereas overgrowths formed during size‐independent crystal growth.  相似文献   
18.
Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean–Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06–1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories.

Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450–489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric–palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.  相似文献   

19.
In the mid-1980s, it was concluded based on geochemical study that Th, Sc, La concentrations and ratios Th/Sc, La/Sc and Eu/Eu* did not wary significantly in the post-Archean time. It was impossible to judge about compositional variations of upper crust during the Riphean and Vendian, because data of that time characterized a limited number of samples from the post-Archean basins of Australia, New Zealand, and Antarctic. Considered in this work are variations of Eu/Eu*, LREE/HREE, Th/Sc, and La/Sc ratios in Upper Precambrian fine-grained siliciclastic rock of the Southern Urals western flank (Bashkirian meganticlinorium) and Uchur-Maya region (Uchur-Maya plate and Yudoma-Maya belt). As is established, only the Eu anomaly in the studied siliciclastic rocks is practically identical to this parameter of the average post-Archean shale. Three other parameters plot on the Riphean-Vendian variation curves with positive and negative excursions of diverse magnitude, which do not coincide always in time. It is assumed that these excursions likely mark stages of local geodynamic activity, destruction of pre-Riphean cratons, and progressing recycling of sedimentary material during the Riphean.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号