首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   27篇
  国内免费   67篇
地球物理   19篇
地质学   256篇
海洋学   4篇
综合类   16篇
自然地理   4篇
  2021年   3篇
  2020年   11篇
  2019年   8篇
  2018年   14篇
  2017年   8篇
  2016年   16篇
  2015年   6篇
  2014年   11篇
  2013年   10篇
  2012年   13篇
  2011年   16篇
  2010年   11篇
  2009年   10篇
  2008年   13篇
  2007年   11篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   14篇
  2002年   9篇
  2001年   4篇
  2000年   9篇
  1999年   15篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   6篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
81.
云开地块基底演化与成矿作用   总被引:2,自引:0,他引:2  
云开地块位于广东和广西两省的毗邻地带,经历了基底形成和改造两个阶段。基底形成包括了古中元古代高州杂岩的沉积与变质、晚元古代云开群的沉积与变质、震旦系和早古生代地层的沉积和变质,在早古生代晚期作为整体转化为稳定地块。基底改造发生在加里东期之后,包括海西-印支期与燕山-喜山期两个阶段,基底岩石经历了断裂变质、重熔改造和构造活动。在基底演化过程中,物质进行了重新分布,一些元素得以富集成矿,使云开地区成为我国重要的银金-多金属矿床集中区。  相似文献   
82.
I.INTRODUCTIONUptothepresent,severaltheoreticalandimportantpracticalproblemshavebeensolvedinkarstgeomorphology.However,alongw...  相似文献   
83.
胶辽地块古元古代沉积组合:年代与层序   总被引:4,自引:0,他引:4  
根据变质岩石组合、成矿特征等方面对比研究,证明胶辽地块古元古代粉子山群、北部辽河群、老岭群可对比,荆山群和南部辽河群、集安群亦可以比,相应的北部和南部变质地层为同时异相。通过对各群同位素年代学资料的收集总结,表明它们沉积于2.5至1.9Ga期间,变质作用起始于2.2Ga,终止于正.6Ga。以辽河群为例,各岩组的原岩恢复及沉积环境讨论,表明整个裂陷带经历了从裂谷盆地向被动大陆边缘转化。最后于该活动带南缘转变为活动大陆边缘的,反映了该活动带完整的层序沉积环境变迁过程。  相似文献   
84.
阿尔金山中段苏吾什杰岩体(群)地质特征   总被引:8,自引:3,他引:8  
校培喜 《西北地质》2003,36(3):14-23
分布于阿中地块中浅变质岩隆起带之上的苏吾什杰岩体(群),为一规模较大的复式岩体,不同岩石类型之间接触关系清楚,由早到晚其侵位顺序为辉长—辉绿岩→闪长岩→似斑状花岗闪长岩→细粒二长花岗岩→似斑状中粗粒二长花岗岩,总体显示成分演化的特点,亦具有结构演化;岩石地球化学资料研究证明,该岩体(群)花岗岩与同碰撞型花岗岩(S—COLG)相似,显示壳源和壳幔混合源花岗岩特点;依据同位素测年结果,确定其侵位时代为早古生代晚期,岩体形成与板块作用相关连。  相似文献   
85.
佳木斯地块主要金矿类型特征及找矿方向   总被引:5,自引:0,他引:5  
戴才 《世界地质》1999,18(3):55-60
黑龙江省东部佳木斯地块是我国重要金矿集中产区之一。根据区域地质背景,金成矿作用及矿物共生组合特征,初步划分出5个金矿类型,并对各类型金矿床的地质特征及找矿方向进行了简述。  相似文献   
86.
Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.  相似文献   
87.
Yoko-Dovyren层状纯橄岩-橄长岩-辉长岩地块位于西伯利亚克拉通南部的一处褶皱构造框架中(俄罗斯贝加尔湖地区北部)。该地块的结构在其厚度最大的中部得到了着重研究。剖面底部主体成分为斜长橄榄岩,并依据内部的堆晶成分变化从下往上可分为五个主要的地层序列:纯橄岩→橄长岩→橄榄辉长岩→橄榄辉长苏长岩→石英辉长苏长岩以及含易变辉石的辉长岩。该地块的矿化包括铜-镍矿化、低硫型富铂族元素(PGE)矿化以及铬铁矿化等。另外,该地块也含多种非金属矿物原材料,如硼矿化、透辉石、各种镁质硅酸盐岩等。它们也包括纯橄岩、异剥橄榄岩和橄长岩,并以较高的品质产出,有望采掘加工成为建筑材料(水泥、混凝土、沥青混凝土和建筑陶瓷)。综合利用矿物原材料可增加矿床价值,并有助于建设环保型采矿工作体系。  相似文献   
88.
李超  仝来喜  刘兆  黄小龙 《岩石学报》2020,36(3):871-892
云开地块早古生代的构造背景至今仍存有争论。对云炉-龙修一带出露的含石榴石紫苏花岗岩进行研究可为该区构造-变质演化提供重要制约。详细的岩相学研究表明紫苏花岗岩中存在两种成因的石榴石(石榴石Ⅰ和石榴石Ⅱ),并识别出该岩石保留了三阶段演化的矿物组合(M_1-M_3)。峰期前矿物组合(M_1)由紫苏辉石变斑晶中的包裹体矿物石榴石+黑云母+斜长石+钛铁矿+石英组成。峰期变质-深熔矿物组合(M_2)由基质中平衡共生的斑晶矿物石榴石Ⅰ+紫苏辉石+黑云母+石英+斜长石+钛铁矿构成。退变质矿物组合(M_3)以紫苏辉石和黑云母以及钛铁矿边部降温生成石榴石Ⅱ+石英冠状体("红眼圈")和黑云母+石英后成合晶为特征。传统地质温压计、平均温压法及在NCKFMASHTO模式体系下的相平衡模拟结果表明,紫苏花岗岩峰期前矿物组合形成条件为720℃/70kbar(M1),峰期变质-深熔结晶条件为835~810℃/65~58kbar(M_2),退变质条件为740℃/56kbar(M_3)。岩相观察和P-T计算结果表明紫苏花岗岩的形成可能反映了一条顺时针的P-T轨迹,且以峰期前略微减压并伴随明显的升温和峰期后具有近等压冷却(IBC)过程为特征。LA-ICP-MS锆石U-Pb年代学结果显示锆石核部加权平均年龄为~431Ma,锆石边部加权平均年龄为~243Ma。我们认为峰期深熔作用和岩浆结晶石榴石Ⅰ的形成可能发生于早古生代(加里东期),而晚期退变质作用和变质重结晶石榴石Ⅱ的形成可能发生在早中生代(印支期)。本研究也表明云开地区含石榴石紫苏花岗岩的形成与早古生代扬子和华夏陆块碰撞后抬升过程有紧密联系,并遭受了早中生代印支期构造热事件的明显叠加。  相似文献   
89.
Petrological, chronological and geotectonic geological analysis of Precambrian metamorphic rock in Korean Peninsula shows that the remnants ( 〉3.4 Ga) of continental nuclei crust were formed in the Paleoarchean in the Rangrim Massif. In the massif, the main formation ages of continental crust range from 3.2 Ga to 2.5 Ga, its important growing period was 2.8 - 2. 5 Ga. The subsequent expansion period of the Rangrim Massif was 2. 4 - 2. 2 Ga. The division events occurred in 1.85 Ga and in the Late Paleoproterozoic-Early Mesoproterozoic, respectively. Since then the massif was relatively stable. However, the last division of the Rangrim Massif occurred at 793 Ma.  相似文献   
90.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号