首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  国内免费   5篇
地质学   29篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有29条查询结果,搜索用时 265 毫秒
21.
The rock engineering classification system is based on six parameters defined by Bieniawski [5], who employed parallel sets of linguistic and numerical criteria that were acknowledged to influence the behaviour of rock masses and the stability of rock structures. Consequently, experts frequently relate rock joints and discontinuities as well as ground water conditions in linguistic terms, with rough calculations. Recently, intelligence system approaches such as artificial neural network (ANN) and neuro-fuzzy methods have been used successfully for time series modelling. Using neuro-fuzzy approaches, which enable the information that is stored in trained networks to be expressed in the form of a fuzzy rule base, would help to overcome this issue. This paper presents the results of a study of the application of neuro-fuzzy methods to predict rock mass rating. We note that the proposed weights technique was applied in this process. We show that neuro-fuzzy methods give better predictions than conventional modelling approaches.  相似文献   
22.
The following paper reviews four well-known geomechanical equations, i.e. the elastic modulus of the rock mass as function of the Rock Mass Rating (RMR) system, the relation between Rock Quality Designation (RQD) and spacing distribution of the natural discontinuities in the rock mass, the distribution of the discontinuity spacing along a straight line for a rock mass and the intact rock strength in function of the specimen diameter by using a power-law flat tails equation based on the theory of Kaniadakis. The results show that by using novel formulations, the experimental data are better approximated by the power-law flat tails statistical approach, which shows a trend similar to ordinary exponential for a certain part of the interval of variability of x; the tails, however, follow the power law for extreme values of x. It was, therefore, possible to obtain new formulations able to better represent some fundamental aspects of geomechanics.  相似文献   
23.
An historical review of the geotechnical behaviour of the Northwich Rock Salt is presented as a forerunner to a numerical modelling analysis of the current stability of the Winsford salt mine, Cheshire. Extensive laboratory and in situ tests have been historically undertaken by the mine to characterise the strength and stiffness behaviour of the rock salt. Recent proposals to store waste within the Bostock No. 5 panel of the mine have lead to increasing concerns as to the current stability of the workings, as well as to the long term stability of the mine. This present study uses the wealth of geotechnical data to assess the current mine stability using numerical modelling techniques and validates the results against in situ roof to floor convergence data. The results indicate that the mine structures are stable. Convergence simulation using the numerical model compare favourably with the in situ monitoring data allowing greater con.dence to be placed in future predictions.  相似文献   
24.
Deformability of rock masses influencing their behavior is an important geomechanical property for the design of rock structures. Due to the difficulties in determining the deformability of jointed rock masses at the laboratory-scale, various in-situ test methods such as pressuremeter, dilatometer, plate loading tests etc. have been developed. Although these techniques are currently the best and direct methods, they are time-consuming and expensive, and present operational difficulties. In addition, the influence of the test volume on deformation modulus depending on the method employed is also important. For these reasons empirical equations to indirectly estimate the deformation modulus have also been recommended by several investigators as an alternative approach. In this study; the geomechanical quality of weak, heavily jointed, sheared and/or blocky greywacke rock masses, on which very concentrated civil works are continuing at the southern and southwestern parts of Ankara (Turkey), was assessed. The deformation modulus was determined by pressuremeter tests, the possible effects of variables on the derived deformation modulus from the pressuremeter test were evaluated by numerical methods, and the comparisons between the deformation modulus of the greywackes obtained from the pressuremeter tests and their geomechanical quality (GSI and RMR) were made. Numerical simulations revealed that the presence of a disturbed annulus around the borehole causes underestimation of the deformation modulus, while the effect of length to diameter ratio of the pressuremeter probe on the deformation modulus is minor. Based on the geo-engineering characterization assessments, mainly two greywacke rock masses with different geomechanical qualities were identified. Geotechnical quality of one of these rock masses was verified by the back analysis of two slope failures. The empirical equations to indirectly estimate the deformation modulus of the greywackes using their GSI and RMR values yielded high coefficients of correlation.  相似文献   
25.
常用围岩分类方法对某深埋隧洞的适用性分析   总被引:3,自引:0,他引:3  
某深埋隧洞局部地应力高达42 MPa,局部外水压力高达10 MPa,具有高地应力、高外水压力的特点。一般认为,最大主应力大于20 MPa属于高地应力,外水压力远大于1 MPa为高外水压力。采用Q系统、RMR分类、水电规范HC分类、国标BQ分类等4种常用围岩分类方法对该隧洞进行了围岩分类。分类结果表明,高地应力条件下,Q系统的适用性较好,RMR分类、HC分类、BQ分类适用性均差。4种分类方法在高外水压力条件下的适用性均差。出现上述现象的主要原因有:Q系统通过最大切向应力与岩石抗压强度的比值σθ/σc的大小,反映高地应力对围岩类别的影响。故其在高地应力条件下的适用性较好;RMR分类没有考虑高地应力对围岩类别的影响。其分类结果在高地应力区特别是岩爆段偏高;HC分类在高地应力区简单地采用降级的方法。其分类结果误差较大;BQ分类对岩石强度过于敏感。其分类结果在高地应力区过于保守。这4种方法均未考虑高外水压力对围岩类别的影响。论文提出了一种“归一化方法”,可以对不同分类方法分类结果进行相互比较。  相似文献   
26.
Summary. The methods for designing pillars in underground mines are fundamentally based on empirical formulae that do not take into account the quality of the rock mass as an input parameter. This makes them difficult to apply in other types of ground that are different to those used to establish each empirical formula. To avoid this inconvenience, the present paper examines existing empirical formulae to then propose a modification of these formulae adjusting the resistance of the pillars on the basis of the RMR (Bieniawski’s Rock Mass Rating). The compression safety factor of the pillars is analyzed for each modified formula and a study is carried out of shear failure if planes of weakness exist in the pillars. Finally, the safety factors of the pillars in a marble mine situated in Alicante (Southern Spain) were calculated in order to validate the new formulae. From the results obtained, it is concluded that this new formulation determines the safety factor of pillars of the mine with greater reliability, provided that the pillars are isolated. At the same time, the introduction of the RMR in the formulae results in a better fit of the strength of each pillar to the characteristics of the rock mass.  相似文献   
27.
岩体与岩石的力学强度之间既有内在联系又存在明显的差异,场地岩石力学指标对于评价场地岩体的力学特性至关重要。以三门核电场地为研究对象,在室内岩石力学试验的基础上,结合野外地质调查,综合考虑岩体结构特征和应力分布状态等因素的影响,引入定量描述岩体结构特征和风化程度的地质强度指标(GSI),采用Hoek Brown强度准则估计岩体力学参数,同时与岩体地质力学分类法(RMR)计算得到的岩体力学参数进行对比分析。基于GSI的Hoek-Brown法得到的中等风化凝灰质砂岩、微风化凝灰质砂岩和微风化安山玄武岩岩体的c值分别为4.03、6.20、6.10 MPa,φ值分别为31.96°、34.37°和33.87°。基于RMR评分的Hoek-Brown法得到的c值分别为4.42、6.44、7.24 MPa,φ值分别为28.92°、32.43°和34.51°。研究结果表明,采用Hoek-Brown准则确定的核电场地岩体力学强度指标比较合理,得到的岩体力学指标可以作为核电站基础设计的重要依据。  相似文献   
28.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   
29.
Engineering geological properties and support design of a planned diversion tunnel at Guledar dam site, which was located at the North of Ankara, Turkey were studied in this article. The main purpose of the construction of the planned tunnel is to regulate, drainage and to provide water for irrigation purposes. The diversion tunnel runs mainly through formations of limestone, sandstone and diabase. Rock masses at the site were characterized using Rock Mass Rating (RMR), Rock Mass Quality (Q), Rock Mass Index (RMi) and Geological Strength Index (GSI). RMR, Q, RMi and GSI were determined by using field data and mechanical properties of intact rock samples, measured in the laboratory. Support requirements for the planned diversion tunnel were determined accordingly in terms of the rock mass classification systems. Recommended support systems by empirical methods were also analyzed using 2D Finite Element method. Calculated parameters based on empirical methods were used as input parameters in the finite element models. The results from both methods were compared with each other. This comparison suggests that more reliable support design could be achieved by using the finite element method together with the empirical methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号