首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   131篇
  国内免费   186篇
测绘学   1篇
地球物理   118篇
地质学   697篇
海洋学   43篇
综合类   37篇
自然地理   52篇
  2024年   1篇
  2023年   5篇
  2022年   16篇
  2021年   23篇
  2020年   25篇
  2019年   31篇
  2018年   23篇
  2017年   30篇
  2016年   32篇
  2015年   24篇
  2014年   31篇
  2013年   39篇
  2012年   34篇
  2011年   39篇
  2010年   25篇
  2009年   44篇
  2008年   40篇
  2007年   40篇
  2006年   43篇
  2005年   45篇
  2004年   31篇
  2003年   31篇
  2002年   31篇
  2001年   19篇
  2000年   29篇
  1999年   24篇
  1998年   21篇
  1997年   22篇
  1996年   29篇
  1995年   16篇
  1994年   17篇
  1993年   22篇
  1992年   14篇
  1991年   15篇
  1990年   10篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   2篇
  1977年   1篇
  1954年   2篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
31.
以澳大利亚南部的吉普斯兰盆地和中国东北部的松辽盆地为例,通过对它们所处的地理位置、内部结构构造特征、油气藏类型、油气藏的分布特征、生储盖特征以及形成时代的比较,对纵向拼合式裂谷盆地形成的动力学机制及其含油气性作了探讨。阐明了具有相似结构构造特征和演化历史,同一时期处于相近地理环境中的沉积盆地,应具有相似的含油气远景;而这一切都是由近似的成盆动力学机制,即:地球深部动力所诱发的远源板内应力、地幔底辟等因素所控制的,再一次证明了裂谷类型的沉积盆地在油气勘探中的重要性;指明了在我国东部原裂谷系中开展油气普查勘探工作的必要性  相似文献   
32.
在计算覆盖整个黄晔裂谷200口人工井(包括少部分探井)沉降量的基础上,总结本区二种基本沉降曲线模式。统计出热沉降(St)与初始沉降(Si)之比为0.6,依此为约束条件与大陆岩石圈伸展的地球动力学正演模式进行对比,与简单剪切模式预测的热沉降与初始沉降之比值及几何效应更接近。进一步证实黄骅裂谷以简单剪切机制形成的地球动力学模式更合理,这与著名的以纯剪模式形成的北海伸展盆地不同  相似文献   
33.
扬子地台北缘裂谷系金与多金属成矿特征   总被引:3,自引:0,他引:3  
涂怀奎 《黄金地质》1997,3(4):36-42
扬子地台北缘大多数金矿床集中集中在裂谷系古陆隆起内外接触处,经历了复杂的地壳结构演化,形成新的金矿类型和矿化组合,具多源性,以深源为主,浅源次之,再次是陆源,控矿构造含同生构造与封闭聚矿盆地等多种成矿作用的叠加。  相似文献   
34.
渤海盆地现代构造应力场与强震活动   总被引:12,自引:1,他引:12       下载免费PDF全文
渤海位于北华北新生代裂陷盆地的东部,是一个晚第四纪形成的内陆海盆. 渤海盆地活动断裂发育,地震活动强烈,交会于渤海中部的NE向营口——潍坊断裂带北段、庙西北——黄河口——临邑断裂带及NW向北京——蓬莱断裂带是主要的活动构造带,将海区分成4个次级新构造区,成为现代应力场作用的构造基础. 综合研究38个震源机制解和75个井区应力场等资料,以及构造应力场二维数值模拟计算结果表明,渤海及其邻区现代构造应力场的压应力方向为NE60~90,张应力为SN——NW30;以水平和近水平应力作用为主;不同构造区主应力方向存在一定的差异. 现今渤海地区地壳发育以NNE——NE和NW——WNW走向的共轭剪切破裂为特征,是控制地震活动的主要构造.   相似文献   
35.
This paper presents the results of the application of the Ground Penetrating Radar (GPR) method, or Georadar, in outlining a zone of contamination due to solid residues at the waste burial site of Rio Claro in the state of São Paulo, SE Brazil. A total of eight GPR profiles with 50- and 100-MHz antennae were surveyed. Six profiles were located within the landfill site and the remaining two were outside. The main objective of the GPR survey was to evaluate the side extension of contamination. A Vertical Electric Sounding (VES) survey was performed at four points within the site in order to investigate the vertical extent of the contamination plume and to define the bottom of the landfill. Two additional VESs were done outside the landfill with the purpose of determining the top of the ground water table and the geoelectric stratigraphy of the background. From the interpretation of the GPR profiles, it was possible to locate the top of the contamination plume and to infer that it was migrating laterally beyond the limits of the waste disposal site. This was observed along the profile situated close to the highway SP-127, which was about 20 m from the limit of the site. The signature of the contaminant appears as a discontinuous reflector that is believed to be a shallow ground water table. The discontinuity is marked by a shadow zone, which is characteristic of conductive contaminant residues. The contamination did not move far enough to reach a sugar cane plantation located at approximately 100 m from the border of the site. In the regions free from contamination, the ground water table was mapped at approximately 10 m of depth, and it was characterized by a strong and continuous reflector. The radar signal penetrated deep enough and enabled the identification of a second reflector at approximately 14 m deep, interpreted as the contact between the Rio Claro and the Corumbataí formations. The contact is marked by the presence of gravel characterized by ferruginous concretes, which cause the strong amplitude reflection in the GPR profile. Within the landfill site, the quantitative interpretation of the VES results showed the contamination zone. The base of the landfill varies between 11 and 15 m deep. Outside the landfill site, the VES results showed no indication of contamination and allowed the determination of the top of the ground water table and the contact between the Rio Claro and the Corumbataí formations. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology and information from several boreholes, about 17 m depth, on average. The bottom of the landfill reaches a maximum of 14.5 m depth.  相似文献   
36.
成矿带位于北秦岭北部晚元古代-早古生代裂谷带南缘的变质火山岩区,受油房-皇台断裂的次级分支断裂及燕山-印支期的侵入岩体及次火山岩脉的联合控制,成矿地质条件与甘肃白银厂铜-铅-锌矿田相类似,成矿带内地表已发现多条铜-铅-锌矿(化蚀变)体,找矿潜力较大,只要进一步深入开展工作,有望找到与白银厂铜-铅-锌矿田相类似的大型一超大型铜-铅-锌多金属矿床。  相似文献   
37.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   
38.
Four major fault systems oriented N–S to NNE–SSW, NE–SW, E–W and NW–SE are identified from Landsat Thematic Mapper (TM) images and a high resolution digital elevation model (DEM) over the Ethiopian Rift Valley and the surrounding plateaus. Most of these faults are the result of Cenozoic - extensional reactivation of pre-existing basement structures. These faults interacted with each other at different geological times under different geodynamic conditions. The Cenozoic interaction under an extensional tectonic regime is the major cause of the actual volcano-tectonic landscape in Ethiopia. The Wonji Fault Belt (WFB), which comprises the N–S to NNE–SSW striking rift floor faults, displays peculiar propagation patterns mainly due to interaction with the other fault systems and the influence of underlying basement structures. The commonly observed patterns are: curvilinear oblique-slip faults forming lip-horsts, sinusoidal faults, intersecting faults and locally splaying faults at their ends. Fault-related open structures such as tail-cracks, releasing bends and extensional relay zones and fault intersections have served as principal eruption sites for monogenetic Plio-Quaternary volcanoes in the Main Ethiopian Rift (MER).  相似文献   
39.
Tectono-stratigraphic analysis of the East Tanka fault zone (ETFZ), Suez Rift, indicates that the evolution of normal fault segments was an important control on syn-rift depositional patterns and sequence stratigraphy. Sedimentological and stratigraphic analysis of the Nukhul Formation indicates that it was deposited in a narrow (ca 1–2 km), elongate (ca 5 km), fault-bounded, tidally influenced embayment during the low subsidence rift-initiation phase. The Nukhul Formation is composed of transgressive (TST) and highstand (HST) systems tract couplets interpreted as reflecting fault-driven subsidence and the continuous creation of accommodation in the hangingwall to the ETFZ. The overlying Lower Rudeis Formation was deposited during the high subsidence rift-climax phase, and is composed of forced regressive systems tract (FRST) shallow marine sandbodies, and TST to HST offshore mudstones. Activity on the ETFZ led to marked spatial variability in stratal stacking patterns, systems tracts and key stratal surfaces, as footwall uplift, coupled with regressive marine erosion during deposition of FRST sandbodies, led to the removal of intervening TST–HST mudstone-dominated units, and the amalgamation of FRST sandbodies and the stratal surfaces bounding these units in the footwall. This study indicates that the evolution of normal fault segments over relatively short (i.e. <1 km) length-scales has the potential to enhance or suppress a eustatic sea-level signal, leading to marked spatial variations in stratal stacking patterns, systems tracts and key stratal surfaces. Crucially, these variations in sequence stratigraphic evolution may occur within time-equivalent stratal units, thus caution must be exercised when attempting to correlate syn-rift depositional units based solely on stratal stacking patterns. Furthermore, local, tectonically controlled variations in relative sea level can give rise to syn-rift stacking patterns which are counterintuitive in the context of the structural setting and perceived regional subsidence rates.  相似文献   
40.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号