首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
  国内免费   1篇
大气科学   2篇
地球物理   9篇
地质学   58篇
自然地理   13篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   8篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   7篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有82条查询结果,搜索用时 93 毫秒
41.
The Apuseni–Banat–Timok–Srednogorie magmatic–metallogenic belt (ABTS belt), forms a substantial metallogenic province in the Balkan-South Carpathian system in southeastern Europe. The belt hosts porphyry, skarn, and epithermal deposits mined since pre-Roman times. Generally, the deposits, prospects, and occurrences within the belt are linked to magmatic centers of calc-alkaline affinity. Fifty-one rhenium-osmium (Re–Os) ages and Re concentration data for molybdenites define systematic geochronologic trends and constrain the geochemical-metallogenic evolution of the belt in space and time. From these data and additional existing geologic-geochemical data, a general tectonic history for the belt is proposed. Mineralization ages in Apuseni-Banat, Timok, and Panagyurishte (the central district of the larger E–W Srednogorie Zone) range from 72–83, 81–88, and 87–92 Ma, respectively, and clearly document increasing age from the northwestern districts to the southeastern districts. Further, Re–Os ages suggest rapidly migrating pulses of Late Cretaceous magmatic–hydrothermal activity with construction of deposits in ~1 m.y., districts in ~10 m.y., and the entire 1,500 km belt in ~20 m.y. Ages in both Timok and Panagyurishte show systematic younging, while deposit ages in Banat and Apuseni are less systematic reflecting a restricted evolution of the tectonic system. Systematic differences are also observed for molybdenite Re concentrations on the belt scale. Re concentrations generally range from hundreds to thousands of parts per million, typical of subduction-related Cu–Au–Mo–(PGE) porphyry systems associated with the generation of juvenile crust. The geochronologic and geochemical trends are compatible with proposed steepening of subducting oceanic slab and relaxation of upper continental plate compression. Resulting influx of sub-continental mantle lithosphere (SCML) and asthenosphere provide a fertile metal source and heat, while the subducting slab contributes connate and mineral dehydration fluids, which facilitate partial melting and metal leaching of SCML and asthenosphere. Cu–Au–Mo–(PGE) porphyry deposits may develop where melts are trapped at shallow crustal levels, often with associated volcanism and epithermal-style deposits (South Banat, Timok, and Panagyurishte). Mo–Fe–Pb–Zn skarn deposits may develop where felsic melts are trapped adjacent to Mesozoic limestones at moderate crustal levels (North Banat and Apuseni). Systematic spatial variations in deposit style, commodity enrichment, Re–Os ages, and Re concentrations support specific tectonic processes that led to ore formation. In a post-collisional setting, subduction of Vardar oceanic crust may have stalled, causing slab steepening and rollback. The slab rollback relaxes compression, facilitating and enhancing orogenic collapse of previously thickened Balkan-South Carpathian crust. The progression of coupled rollback-orogenic collapse is evidenced by the width of Late Cretaceous extensional basins and northward younging of Re–Os ages, from Panagyurishte (~60 km; 92–87 Ma) to Timok (~20 km; 88–81 Ma) to Apuseni-Banat (~5 km; 83–72 Ma). Generation of a well-endowed mineral belt, such as the ABTS, requires a temporally and spatially restricted window of magmatic–hydrothermal activity. This window is quickly opened as upper plate compression relaxes, thereby inducing melt generation and ingress of melt to higher crustal levels. The window is just as quickly closed as upper plate compression is reinstated. The transient tectonic state responsible for economic mineralization in the ABTS belt may be a paleo-analogue to transient intervals in the present subduction tectonics of SE Asia where much mineral wealth has been created in the last few million years.  相似文献   
42.
Armed with a scholarship to find an answer to the question “What is geography?” Simion Mehedin?i's studies took him to continental Europe's three main centers of geographic thought: Paris, Berlin, and Leipzig. We explore how his innovative ideas flourished, especially in Leipzig under Ratzel. The first Romanian geographer, Mehedin?i, must be credited with having defined geography as a science of mutual relationships between geospheres. This thinking reached its pinnacle in two complex books, Terra and Ethnos, the contents of which we synthetically explore. We also trace the unfavorable historical and geopolitical conditions that led to this pioneering work being little recognized worldwide.  相似文献   
43.
The latest Cretaceous continental vertebrate faunas of the wider Transylvanian area figured prominently in discussions concerning the Cretaceous–Paleogene Boundary (K-Pg) events when they were first described by Nopcsa between 1897 and 1929, because they were assumed to be late Maastrichtian in age. Subsequently their age was reconsidered as early Maastrichtian, and were thus regarded of lesser importance in understanding the K-Pg boundary events in Europe and worldwide. Moreover, Transylvanian continental vertebrate assemblages (the so-called ‘Haţeg Island’ faunas) were often lumped together as a temporally restricted assemblage with a homogenous taxonomic composition. Recent fossil discoveries and more precise dating techniques have considerably expanded knowledge of the Transylvanian vertebrate assemblages, their ages, and their evolution. A synthesis of the available stratigraphic data allows development of the first comprehensive chronostratigraphic framework of the latest Cretaceous Transylvanian vertebrates. According to these new data, expansion of continental habitats and emergence of their vertebrate faunas started locally during the latter part of the late Campanian, and these faunas continued up to the second half of the Maastrichtian. During this time, long-term faunal stasis appears to have characterized the Transylvanian vertebrate assemblages, which is different from the striking turnovers recorded in western Europe during the same time interval. This suggests that there was no single ‘Europe-wide’ pattern of latest Cretaceous continental vertebrate evolution. Together, the available data shows that dinosaurs and other vertebrates were relatively abundant and diverse until at least ca. 1 million years before the K-Pg boundary, and is therefore consistent with the hypothesis of a sudden extinction, although this must be tested with future discoveries and better age constraints and correlations.  相似文献   
44.
45.
Mean daily streamflow records from 44 river basins in Romania with an undisturbed runoff regime have been analyzed for trends with the nonparametric Mann‐Kendall test for two periods of study: 1961–2009 (25 stations) and 1975–2009 (44 stations). The statistical significance of trends was tested for each station on an annual and seasonal basis, for different streamflow quantiles. In order to account for the presence of serial correlation that might lead to an erroneous rejection of the null hypothesis, a trend‐free prewhitening was applied to the original data series. The regional field significance of trends is tested by a bootstrap procedure. Changes in the streamflow regime in Romania are demonstrated. The main identified trends are an increase in winter and autumn streamflow since 1961 and a decrease in summer flow since 1975. The streamflow trends are well explained by recent changes in temperature and precipitation that occurred in the last 50 years. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
46.
The many glacial cirques in the mountains of Romania indicate the distribution of former glacier sources, related to former climates as well as to topography. In the Transylvanian Alps (Southern Carpathians) cirque floors rise eastward at 0.714 m km−1, and cirque aspects tend ENE, confirming the importance of winds from some westerly direction. There is a contrast between two neighbouring ranges: the Făgăraş, where the favoured aspect of cirques is ENE, and the Iezer, where the tendency is stronger and to NNE. This can be explained by the Iezer Mountains being sheltered by the Făgăraş, which implies precipitation‐bearing winds from north of west at times of mountain glaciation. Palaeoglaciation levels also suggest winds from north of west, which is consistent with aeolian evidence from Pleistocene dunes, yardangs and loess features in the plains of Hungary and southwestern Romania. In northern Romania (including Ukrainian Maramureş) the influence of west winds was important, but sufficient only to give a northeastward tendency in cirque aspects. This gave stronger asymmetry than in the Transylvanian Alps, as the northward (solar radiation incidence) tendency in these marginally glaciated mountains was less diluted by wind effects. Cirque floors in northern Romania are lower also in northeast‐facing cirques. In general, cirque aspects result from several factors and the mean tendency is not downwind, but is displaced from poleward by wind and by minor effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
47.
Pollen analysis from a peat core 7.0 m in length, taken from a bog near Bisoca, in a mid-altitude area of the Buzăului Subcarpathian mountains, is used to reconstruct the postglacial vegetation history of the region. The vegetation record, which is supported by twelve 14C dates, starts at the end of the Late Glacial period. At the Late Glacial/Holocene transition, open vegetation was replaced by forest, suggesting a fast response to climatic warming. The Holocene began with the expansion of Betula, Pinus and Ulmus, followed, after 11,000 cal yr BP, by Fraxinus, Quercus, Tilia and Picea. The rapid expansion of these taxa may be due to their existence in the area during the Late Glacial period. At ca. 9200 cal yr BP, Corylus expanded, reaching a maximum after 7600 cal yr BP. The establishment of Carpinus occurred at ca. 7200 cal yr BP, with a maximum at ca. 5700 cal yr BP. Fagus pollen is regularly recorded after 7800 cal yr BP and became dominant at ca. 2000 cal yr BP. The first indications of human activities appear around 3800 cal yr BP.  相似文献   
48.
49.
The AuPbZn low-sulfidation epithermal ore deposits of Troita, Trestia, and Magura (Apuseni Mountains, Romania) are spatially related to the Bolcana Cu-porphyry. In an attempt to demonstrate the connection between these mineralizations, a geometric study was made based on structural measurements and GOCAD© geomodeller 3D representation of deposits. This study indicates that a specific spatial distribution of the different Au and PbZn veins of the epithermal deposits occurs around the Cu-porphyry, which cannot result from telescoped systems. To cite this article: O. Cardon et al., C. R. Geoscience 337 (2005).  相似文献   
50.
The VRANCEA99 and VRANCEA2001 seismic refraction experiments are part of a multidisciplinary project to study the Eastern Carpathians in Romania. The objectives of these studies are intended to disclose a more detailed picture of the crustal and upper mantle structures above the seismically active Vrancea region. In this paper we provide additional constraints for the upper crustal structures of the area. The 1999 campaign consisted of a 320-km-long N–S profile and a 70-km-long E–W profile. The intersecting 2001 profile extended in E–W direction from the Hungarian border to the Black Sea. In order to enhance the model resolution, first arrival data from local crustal earthquakes were also included.This configuration allowed for the first time to derive a 3-D velocity model for the upper crust of the Romanian Carpathian Orogen, within a 115×235 km wide region, centred over the Vrancea seismic zone. The 3-D model reveals lateral velocity variations, which were not visible on the in-line interpretations. It allows us to distinguish between foreland platform areas, foreland basins and the Carpathian Orogen. Clear velocity differences between the foreland basins south and southeast of the Eastern Carpathians and the Focsani Basin further north indicate different pre-Miocene sedimentary compositions and geological evolutions of these foreland platforms. The involved Moesian and Scythian platforms are separated by the Trotus Fault system, which is observed as a velocity discontinuity. An upper crustal high-velocity zone, above the northern Vrancea seismic zone, could also be identified. This high-velocity zone is explained by a Middle Pliocene to Pleistocene E–W oriented out-of-sequence thrust of the crystalline basement, below the decollement of the flysch nappes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号