首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6850篇
  免费   1975篇
  国内免费   1785篇
测绘学   24篇
大气科学   79篇
地球物理   4477篇
地质学   5256篇
海洋学   209篇
天文学   105篇
综合类   214篇
自然地理   246篇
  2024年   19篇
  2023年   86篇
  2022年   207篇
  2021年   199篇
  2020年   280篇
  2019年   335篇
  2018年   299篇
  2017年   340篇
  2016年   355篇
  2015年   380篇
  2014年   474篇
  2013年   384篇
  2012年   385篇
  2011年   420篇
  2010年   388篇
  2009年   520篇
  2008年   442篇
  2007年   460篇
  2006年   472篇
  2005年   403篇
  2004年   379篇
  2003年   362篇
  2002年   353篇
  2001年   286篇
  2000年   303篇
  1999年   301篇
  1998年   277篇
  1997年   243篇
  1996年   256篇
  1995年   246篇
  1994年   179篇
  1993年   178篇
  1992年   113篇
  1991年   60篇
  1990年   61篇
  1989年   40篇
  1988年   35篇
  1987年   22篇
  1986年   10篇
  1985年   7篇
  1984年   15篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1979年   9篇
  1978年   4篇
  1977年   8篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 131 毫秒
161.
This study provides a detailed magnetostratigraphic record of subsidence in the Linxia Basin, documenting a 27 Myr long sedimentary record from the northeastern edge of the Tibetan Plateau. Deposition in the Linxia Basin began at 29 Ma and continued nearly uninterruptedly until 1.7 Ma. Increasing rates of subsidence between 29 and 6 Ma in the Linxia Basin suggest deposition in the foredeep portion of a flexural basin and constrain the timing of shortening in the northeastern margin of the plateau to Late Oligocene–Late Miocene time. By Late Miocene–Early Pliocene time, a decrease in subsidence rates in the Linxia Basin associated with thrust faulting and a 10° clockwise rotation in the basin indicates that the deformation front of the Tibetan plateau had propagated into the currently deforming region northeast of the plateau.  相似文献   
162.
Crustal structure beneath the Songpan—Garze orogenic belt   总被引:2,自引:0,他引:2  
The Benzilan-Tangke deepseismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in the record sections,the 2-D P-wave crustal structure was ascertained in this paper.The velocity structure has quite strong lateral variation along the profile.The crust is divided into 5layers,where the first,second and third layer belong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocity basement in the area to the north of Ma‘erkang.The crustal structure in the section can be divided into 4parts:in the south of Garze-litang fault,between Garze-Litang fault and Xianshuihe fault,between Xianshuihe fault and Longriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division.The crustal thickness decreases from southwest to northeast along the profile,that is ,from62km in the region of the Jinshajiang River to 52km in the region of the Yellow River.The Moho discontinuity does not obviously change across the Xianshuihe fault basesd on the PmP phase analysis.The crustal average velocity along the profile is lower,about 6.30 km/s.The Benzilan-Tangke profile reveals that the crust in the study area is orogenic.The Xianshuihe fault belt is located in the central part of the profile,and the velocity is positive anomaly on the upper crust,and negative anomaly on the lower crust and upper mantle.It is considered as a deep tectonhic setting in favor of strong earthquake‘s accumulation and occurrence.  相似文献   
163.
The effect of asymmetry and irregularity of the inputted seismic waves on the earthquake-induced differential settlement of the buildings on natural subsoil is investigated in terms of the earthquake damage phenomena, theoretical analyses, dynamic triaxial tests and shaking table tests. A conclusion can be drawn from the investigation results that, the asymmetrical and irregular character of the inputted seismic waves themselves may have a significant contribution to the differential settlement of subsoil and buildings in some cases, and this is a necessary factor to be considered in reasonable evaluation for the differential settlement and other problems relating to the soil deformation due to earthquakes.  相似文献   
164.
Decoupled seismic analysis of an earth dam   总被引:2,自引:0,他引:2  
The seismic stability of an earth dam is evaluated via the decoupled displacement analysis using the accelerograms obtained by ground response analysis to compute the earthquake-induced displacements. The response analysis of the dam is carried out under both 1D and 2D conditions, incorporating the non-linear soil behaviour through the equivalent linear method. Ten artificial and five real accelerograms were used as input motions and four different depths were assumed for the bedrock.1D and 2D response analyses were in a fair agreement with the exception of the top third of the dam where only a 2D modelling of the problem could ensure that the acceleration field is properly described. The acceleration amplification ratio obtained in the 2D analyses was equal to about 2 in all the cases considered, consistently with data from real case histories.The maximum permanent displacements computed by the sliding block analysis were small, being less than 10% of the service freeboard; a satisfactory performance of the dam can then be envisaged for any of the seismic scenarios considered in the analyses.  相似文献   
165.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   
166.
High-resolution seismic data (onshore and offshore), geophysical borehole data as well as detailed lithofacies from airlift boreholes were acquired in northern Netherlands on and around the island of Ameland. Marine and land seismic data combined with information from land boreholes have been explored with the objective of providing a sedimentary model. Qualitative seismic facies analysis of the valley fill commonly shows a thin unit with high amplitude reflectors at the base. Thick units of variable seismic facies (transparent to high amplitude) occur higher up in the sequence. Onlap is common at mid–upper levels within the sandy valley fill (with clay in mm layering), and a transparent seismic facies, corresponding to firm clays, is common at the top. Almost all lithological unit boundaries recognised within core parameters correspond with seismic unconformities within error margins. Subunits contain multiple cyclical trends in gamma ray and grain size. Cyclical trends show lower order fluctuations in gamma radiation on a scale of less than 1 m. Gamma-ray pattern variability between units, e.g. in general coarsening-up or fining-up units, suggests migration of subaqueous outwash fans or ice margin fluctuations. Seismic results could support a headward excavation and backfilling process suggested by Praeg [Morphology, stratigraphy and genesis of buried Elsterian tunnel valleys in the southern North Sea basin [PhD thesis]: University of Edinburgh, 207 pp.; Journal of Applied Geophysics, (this volume)] as being responsible for the formation of buried valleys. On a lithological scale, a more complicated, detailed and cyclical pattern arises. Catastrophic processes are considered unlikely as being responsible for the infill sequence because of the observed small-scale facies variability and because of the presence of diamicton layers. Diamicton layers at the base of basal unconformities as well as higher in sequence could suggest subglacial deformation by grounded ice before and during the valley-fill process.  相似文献   
167.
We prove that rays in linearly elastic anisotropic nonuniform media obey Fermat's principle of stationary traveltime. First, we formulate the concept of rays, which emerges from the Hamilton equations. Then, we show that these rays are solutions of the variational problem stated by Fermat's principle. This proof is valid for all rays except the ones associated with infection points on the phase-slowness surface.  相似文献   
168.
Practical VTI approximations: a systematic anatomy   总被引:3,自引:0,他引:3  
Transverse isotropy (TI) with a vertical symmetry axis (VTI) often provides an appropriate earth model for prestack imaging of steep-dip reflection seismic data. Exact P-wave and SV-wave phase velocities in VTI media are described by complicated equations requiring four independent parameters. Estimating appropriate multiparameter earth models can be difficult and time-consuming, so it is often useful to replace the exact VTI equations with simpler approximations requiring fewer parameters. The accuracy limits of different previously published VTI approximations are not always clear, nor is it always obvious how these different approximations relate to each other. Here I present a systematic framework for deriving a variety of useful VTI approximations. I develop first a sequence of well-defined approximations to the exact P-wave and SV-wave phase velocities. In doing so, I show how the useful but physically questionable heuristic of setting shear velocities identically to zero can be replaced with a more precise and quantifiable approximation. The key here to deriving accurate approximations is to replace the stiffness a13 with an appropriate factorization in terms of velocity parameters. Two different specific parameter choices lead to the P-wave approximations of Alkhalifah (Geophysics 63 (1998) 623) and Schoenberg and de Hoop (Geophysics 65 (2000) 919), but there are actually an infinite number of reasonable parametrizations possible. Further approximations then lead to a variety of other useful phase velocity expressions, including those of Thomsen (Geophysics 51 (1986) 1954), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Harlan (Stanford Exploration Project Report 89 (1995) 145), and Stopin (Stopin, A., 2001. Comparison of v(θ) equations in TI medium. 9th International Workshop on Seismic Anisotropy). Each P-wave phase velocity approximation derived this way can be paired naturally with a corresponding SV-wave approximation. Each P-wave or SV-wave phase velocity approximation can then be converted into an equivalent dispersion relation in terms of horizontal and vertical slownesses. A simple heuristic substitution also allows each phase velocity approximation to be converted into an explicit group velocity approximation. From these, in turn, travel time or moveout approximations can also be derived. The group velocity and travel time approximations derived this way include ones previously used by Byun et al. (Geophysics 54 (1989) 1564), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Tsvankin and Thomsen (Geophysics 59 (1994) 1290), Harlan (89 (1995) 145), and Zhang and Uren (Zhang, F. and Uren, N., 2001. Approximate explicit ray velocity functions and travel times for P-waves in TI media. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 106–109).  相似文献   
169.
Seismic reflection methods provide continuous access both to stratigraphy (vertical) and to subsurface morphology (horizontal), for which the scales of interest may differ by orders of magnitude. Seismic surveys of Quaternary successions have generally sought to optimise vertical resolution, through the use of higher source frequency content. Here, I show that low-frequency bandwidth is not necessarily a limiting factor for the seismic resolution of glacigenic morpho-sedimentary features. Observations are presented from a buried network of large mid-Pleistocene (Elsterian) tunnel-valleys in the southern North Sea Basin, across a 100×130 km study area with water depths less than 30 m. Low-frequency 2D and 3D seismic multi-channel data, acquired for deeper hydrocarbon exploration, are compared with previously available high-frequency single- and multi-channel profiles (5–15 km grid spacing). The low-frequency data contribute to a new understanding of the basal morphology and fill stratigraphy of the tunnel-valleys, in part due to higher data densities (≥1 km grid spacing), but also to improved imaging of reflectors at depth. The tunnel-valleys are seen to be overdeepened troughs, shallow (≤0.5 km) relative to their widths (≤6 km). The basal unconformity defines a series of arborescent elements, convergent to the south; erosional overlap by younger elements to the north has resulted in anastomosing patterns in places. The fill is dominated by axially downlapping clinoforms, descending to the north, onlapped and overlain by subhorizontal reflectors. Well data show that sand-dominated glaciofluvial sediments are overlain by glaciolacustrine to marine muds. Better definition of the clinoforms on low- versus high-frequency multi-channel data is suggested to reflect the coarse spatial scale of the backset glaciofluvial strata. The results support a simple interpretation of time-transgressive tunnel-valley formation by coeval glaciofluvial erosion and backfill beneath the outer tens of kilometres of the northward receding Elsterian ice sheet margin. Comparable submarginal interpretations have been proposed for drainage features (tunnel-valleys and eskers) of the last deglaciation of both northern Europe and North America using integrated geomorphologic and stratigraphic methods. Commercial 2D and 3D seismic data are widely available from exploration areas such as the North Sea and are argued to constitute an underexploited resource for Quaternary research.  相似文献   
170.
结合山东惠民凹陷中央隆起带古近系层序地层学研究,依据层序中湖平面变化特点和相应的沉积物特征,提出了构造运动和气候是本区层序地层发育的主要控制因素。中央隆起带古近系沙河街组二、三、四亚段可划分为 3种层序类型,即断陷初期型、强断陷期型和断陷后期型层序。由于构造运动导致湖岸线向盆地方向退缩,产生下降体系域,本次研究采用了体系域的四分法,即一个完整层序由低位、湖侵、高位和下降四个体系域组成,并且层序界面位于湖平面最大下降的位置,介于下降域和低位域之间。断陷初期红色地层层序,受气候因素控制明显,既不同于冲积地层层序,也不同于正常湖相地层层序,在层序演化上有其独特的特点。受构造作用和沉积物补给条件的影响,研究区发育三种沉积密集段,不同类型的沉积密集段在层序中所处位置不同,控制着不同的烃源岩厚度和油气资源储量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号