首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2914篇
  免费   408篇
  国内免费   968篇
大气科学   24篇
地球物理   636篇
地质学   3130篇
海洋学   284篇
天文学   17篇
综合类   23篇
自然地理   176篇
  2024年   22篇
  2023年   58篇
  2022年   92篇
  2021年   149篇
  2020年   165篇
  2019年   188篇
  2018年   170篇
  2017年   179篇
  2016年   169篇
  2015年   155篇
  2014年   175篇
  2013年   213篇
  2012年   195篇
  2011年   149篇
  2010年   120篇
  2009年   199篇
  2008年   288篇
  2007年   227篇
  2006年   198篇
  2005年   172篇
  2004年   178篇
  2003年   108篇
  2002年   104篇
  2001年   91篇
  2000年   103篇
  1999年   69篇
  1998年   75篇
  1997年   64篇
  1996年   41篇
  1995年   26篇
  1994年   53篇
  1993年   23篇
  1992年   14篇
  1991年   5篇
  1990年   13篇
  1989年   6篇
  1988年   9篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有4290条查询结果,搜索用时 78 毫秒
991.
Abstract

The geochemical characteristics and Pb isotope variations in Fe-Mn deposits collected from the South China Sea (SCS) were studied in this paper. The mineralogical and chemical composition data indicate that the deposits are almost all hydrogenetic in origin. Compared with the Fe-Mn deposits in other oceans, the SCS Fe-Mn deposits have a significantly higher Pb content because of higher material supply in addition to a lower growth rate of the deposits. Pb isotope ratios in the surface of the SCS Fe-Mn deposits are relatively uniform, with a characteristic of relatively lower 206Pb/204Pb ratio. The Pb isotopic compositions of the SCS Fe-Mn deposits are controlled by the Pacific Deep Water and local inputs, which include eolian dust from the Asian continent and weathering products from Taiwan, Luzon and SCS submarine volcanic rocks. The continuously increasing 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios along the transect of nodule D581 over the past 3.5?Ma are affected by the stepwise closure of the Luzon Strait that reduced volcanic material supply and the deep current strengthen at the same time.  相似文献   
992.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   
993.
Tracer studies have been key to unravelling catchment hydrological processes, yet most insights have been gained in environments with relatively low human impact. We investigated the spatial variability of stream isotopes and water ages to infer dominant flow paths in a ~10-km2 nested catchment in a disturbed, predominantly agricultural environment in Scotland. We collected long-term (>5 years) stable isotope data of precipitation, artificial drainage, and four streams with varying soil and land use types in their catchment areas. Using a gamma model, Mean Transit Times (MTTs) were then estimated in order to understand the spatial variability of controls on water ages. Despite contrasting catchment characteristics, we found that MTTs in the streams were generally very similar and short (<1 year). MTTs of water in artificial drains were even shorter, ranging between 1 to 10 months for a typical field drain and <0.5 to 1 month for a country road drain. At the catchment scale, lack of heterogeneity in the response could be explained by the extensive artificial surface and subsurface drainage, “short-circuiting” younger water to the streams during storms. Under such conditions, additional intense disturbance associated with highway construction during the study period had no major effect on the stream isotope dynamics. Supplementary short-term (~14 months) sampling of mobile soil water in dominant soil-land use units also revealed that agricultural practices (ploughing of poorly draining soils and soil compaction due to grazing on freely draining soils) resulted in subtle MTT variations in soil water in the upper profile. Overall, the isotope dynamics and inferred MTTs suggest that the evolution of stream water ages in such a complex human-influenced environment are largely related to near-surface soil processes and the dominant soil management practices. This has direct implications for understanding and managing flood risk and contaminant transport in such environments.  相似文献   
994.
One pre-requisite for the construction of a global chromium isotope mass balance is detailed understanding of Cr isotope systematics in the critical zone where redox-processes can modify the isotope signature of geogenic Cr input into the hydrosphere. A Cr isotope inventory of bedrock, soil, and runoff was performed in a Central European headwater catchment underlain by amphibolite, situated in the vicinity of two previously studied catchments underlain by different bedrock types (serpentinite and leucogranite). Fresh bedrock in the amphibolite catchment NAZ contained ~300 mg/kg Cr, serpentinite at PLB contained ~800 mg/kg Cr, and leucogranite at LYS contained ~2 mg/kg Cr. Monthly hydrochemical monitoring at all three sites revealed higher Cr(VI) export fluxes in winter than in summer. NAZ was characterized by a distinct seasonality in the δ53Cr values, with minima during winter/spring snowmelts (−0.35‰) and maxima during dry summers (0.40‰). Similar seasonality in δ53Cr values had been reported from PLB and LYS. Bedrock at all three sites had similar Cr isotope composition close to −0.10‰, a value indistinguishable from the δ53Cr value of bulk silicate Earth (BSE). Positive mean δ53Cr value of NAZ runoff indicated Cr-isotope fractionations during weathering of geogenic Cr(III), combined with adsorption of the resulting Cr(VI) on soil particles during pedogenesis. However, the mass-weighted mean δ53Cr of NAZ runoff was lower (−0.08‰), indistinguishable from the Cr isotope signature of bedrock. The same pattern of lower mass-weighted mean δ53Cr values of runoff, compared to arithmetic mean δ53Cr values of runoff, were observed also at PLB and LYS. We suggest that elevated Cr runoff fluxes in winter remove some of the residual isotopically light Cr that accumulated in the soil during summer. Seasonality in runoff δ53Cr values appears to be a relatively widespread phenomenon, de-coupled from Cr availability for chemical weathering.  相似文献   
995.
Riparian trees play a critical role in the ecological function of rivers, yet are threatened by anthropogenic change to the hydrological cycle. Identifying the sources of water used by riparian trees can inform sustainable water policy. We used isotopic analysis complemented by measurements of plant water relations to assess water sources for riparian trees at two sites with contrasting hydrogeological processes; one with an alluvial aquifer overlaying an aquitard, and one where fault-induced preferential pathways in the aquitard allowed the flow of deeper, older groundwater from a regional aquifer to the alluvium. At both sites, plant water potential, stomatal conductance, and plant water isotope composition in the xylem sap of riparian trees were collected from two landscape positions, the riverbank and floodplain. We used a Bayesian mixing model (MixSIAR) to assess differences in the proportion of water sources for sites and landscape positions. We found that xylem water isotope values differed between the two sites in line with their hydrogeological characteristics, with trees at the regional aquifer site using water sourced from the regional groundwater and trees at the site with only an alluvial aquifer present using a mixture of water sources, with no dominant source identified. Higher plant predawn water potential values at the regional site indicated greater water availability and support the inference that plants were using more groundwater at the regional site compared to the alluvial site. Trees closer to the river had higher isotope values, indicative of surficial water sources i.e. shallow soil water and river water. Our findings show that the water sources used by riparian trees reflect local hydrogeology and resource availability. Water managers should identify and protect plant water sources to ensure maintenance of riparian trees.  相似文献   
996.
997.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
998.
The Flagfin mojarra, Eucinostomus melanopterus, is a marine spawner whose young individuals are common in the Sine Saloum inverse estuary (Senegal). The species offers the opportunity to study both the use of the estuarine nursery resources and the impact of the particular environment of the inverse estuary on these resources. This will lead to a better understanding of the functioning of the nursery. We investigated the resources used by juvenile Flagfin mojarra by coupling stomach contents and stable isotopes methods.  相似文献   
999.
Precipitation has been of utmost importance in shaping the evolution of landscapes and human settlements in the Mediterranean. However, information on seasonal precipitation patterns through the Holocene is scarce. This study attempts to quantify the evolution of seasonal precipitation in the East Iberian Peninsula (5000 BC to AD 600) based on the carbon isotope composition (δ13C) of archaeobotanical remains. Data on Holm oak, Aleppo pine and small‐grain cereals were combined, and precipitation was inferred from models relating present‐day records to the δ13C of modern samples. Subsequently, charred grains were used as a proxy for ancient moisture during April–May, whereas oak and pine charcoals provided complementary rainfall estimates for September–December and January–August, respectively. The results reveal aridity changes throughout the Holocene in the western Mediterranean. Past spring–summer precipitation was consistently higher than at present. In contrast, autumn and early winter precipitation showed stronger fluctuations, particularly during the first millennium BC, and often exhibited values below those of the present. The high contribution of autumn precipitation to the annual water budget, typical of the present Mediterranean climate, was definitively established at the beginning of the current era. This study shows how a combination of species holding complementary environmental signals can contribute to a wider knowledge of local precipitation dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1000.
This study employs stable oxygen and hydrogen isotopes as natural tracers to assess the headwater of a landslide next to a drainage divide and the importance of the slope's headwater in the study area. The study is undertaken near Wu‐She Township in the mountains of central Taiwan. Because a reservoir is located on the other side of the divide, this study evaluates the relationship between the reservoir water and headwater of the landslide as well. Over a 1‐year period, water samples from September 2008 to September 2009, including local precipitation (LP), Wu‐She Reservoir's water (WSRW), slope groundwater (SGW), upper‐reach stream water (USTW), and down‐reach stream water (DSTW), were analysed for deuterium (δD) and oxygen (δ18O) stable isotopes. Results indicate that WSRW is the predominant component in SGW: approximately 70% of SGW originates from WSRW and 30% from LP based on a two end‐member mass‐balance mixing model for δ18O. The similar two end‐member mixing model is also employed to assess the contributions of USTW and SGW to DSTW. Model results indicate that SGW is the major source of DSTW with a contribution of about 67%. Accordingly, about 47% of DSTW sources from the WSRW. In short, owing to reservoir leakage, WSRW contributes the greater part of both SGW and DSTW. Plentiful WSRW in SGW threatens the stability of the slope in the divide area. To avoid subsequent continuous slope failure, necessary mitigation steps are required. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号