首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1226篇
  免费   192篇
  国内免费   390篇
测绘学   3篇
大气科学   4篇
地球物理   325篇
地质学   1210篇
海洋学   64篇
天文学   1篇
综合类   19篇
自然地理   182篇
  2024年   6篇
  2023年   22篇
  2022年   49篇
  2021年   66篇
  2020年   61篇
  2019年   59篇
  2018年   72篇
  2017年   64篇
  2016年   57篇
  2015年   61篇
  2014年   42篇
  2013年   84篇
  2012年   91篇
  2011年   46篇
  2010年   48篇
  2009年   71篇
  2008年   63篇
  2007年   95篇
  2006年   74篇
  2005年   56篇
  2004年   82篇
  2003年   76篇
  2002年   54篇
  2001年   41篇
  2000年   44篇
  1999年   42篇
  1998年   35篇
  1997年   38篇
  1996年   42篇
  1995年   34篇
  1994年   29篇
  1993年   32篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   9篇
  1988年   15篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1983年   1篇
排序方式: 共有1808条查询结果,搜索用时 31 毫秒
41.
以超高压矿物组合的各种后成合晶及冠状体等卸载不平衡结构为参考标志,将含柯石英的超高压榴辉岩的交形序列分成两个部分。后成合晶及冠状体发育之前的变形为早期变形,是在大陆深俯冲和碰撞条件下发育的超高压变质变形组构。后成合晶及冠状体发育之后的变形为晚期变形,是在超高压岩石折返剥露过程中,主要是在角闪岩相甚至绿片岩相条件下发育的。构造上江苏省北部东海县碱场合柯石英榴辉岩体,分为块状榴辉岩和面理化榴辉岩两种类型,分别代表超高压变质岩早期变形的两个构造阶段或世代(D1、D2)。详细描述了它们的矿物组合、中小尺度及显微尺度下的组构特征,讨论了两者的几何关系和区域构造意义,强调指出,只有含柯石英榴辉岩的早期变形组构,才能记录和反映斜向大陆深俯冲及碰撞的动力学过程。  相似文献   
42.
In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3×10−10 to 2.5×10−7 ccSTP/g by crushing and from 5.4×10−8 to 2.4×10−7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8±1. The lower values are attributed to radiogenic helium from in situ α-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.  相似文献   
43.
The bimodal magmatism of central Jebilet is dated to 330.5+0.68?0.83 Ma by UPb dating on zircons. This age, similar to that of the syntectonic Jebilet cordierite-bearing granitoids, corresponds to the age of the local major tectonometamorphic event. The syntectonic plutonism of the Jebilet massif, composed of tholeiitic, alkaline, and peraluminous calc-alkaline series, is variegated. Magmas emplacement was favoured by the local extension induced by the motion along the western boundary of the Carboniferous basins of the Moroccan Meseta. The Jebilet massif exemplifies the activation of various magmas sources during an episode of continental convergence and crustal wrenching.  相似文献   
44.
In eastern North Island New Zealand, oblique subduction of the Pacific Plate beneath the Australian Plate is associated with strain partitioning. Dextral along-strike component of displacement occurred first at Early Miocene major faults within the eastern fore-arc domain. These faults were active from Early Miocene to Pliocene times. Since Pliocene times, most of the movement occurs at western faults such as the Wellington Fault. The latter joins the back-arc domain to the north. The jump of wrench faulting is related to the oblique opening of the back-arc domain. Both phenomena are impeded southwards by the Hikurangi oceanic plateau entering the subduction zone. To cite this article: J. Delteil et al., C. R. Geoscience 335 (2003).  相似文献   
45.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.

Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism.  相似文献   

46.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   

47.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
48.
The high-temperature metamorphism recorded in the Valuengo and Monesterio areas constitutes a rare occurrence in the Ossa-Morena Zone of Southwest Iberia, where low-grade metamorphism dominates. The metamorphism of the Valuengo area has been previously considered either Cadomian or Variscan in age, whereas that of Monesterio has been interpreted as a Cadomian imprint. However, these areas share important metamorphic and structural features that point towards a common tectonometamorphic evolution. The metamorphism of the Valuengo and Monesterio areas affects Late Proterozoic and Early Cambrian rocks, and is syn-kinematic with a top-to-the-north mylonitic foliation, which was subsequently deformed by early Variscan folds and thrusts. The U–Pb zircon age (480±7 Ma) we have obtained for an undeformed granite of the Valuengo area is consistent with our geological observations constraining the age of the metamorphism. We propose that this high-temperature metamorphic imprint along a NW–SE ductile extensional shear zone is related to the crustal extension that occurred in the Ossa-Morena Zone during the Cambro-Ordovician rifting. In the same way, the tectonothermal effect of the preorogenic rifting stage may have been wrongly attributed to orogenic processes in other regions as well as in this one.  相似文献   
49.
张健  石耀霖  吴春明 《地震地质》2003,25(4):617-624
新生代以来 ,环太平洋周边分布的埃达克岩 (Adakite)主要与年轻洋壳俯冲时在 70~ 90km深处的部分熔融有关。利用数值方法 ,模拟了洋壳俯冲的热演化过程并讨论了脱水、熔融对埃达克岩浆活动的影响。结果表明 :仅在活动海岭俯冲前后约 10Ma内 ,年轻的、热的俯冲海洋板片在 75~85km深度范围内 ,温度升高至 82 5~ 10 0 0℃脱水 ,导致年轻洋壳中角闪岩部分熔融 ,形成埃达克岩(Adakite)。而一般洋壳俯冲在 10 0km以下深度才脱水 ,由于脱水区压力较高洋壳自身不能熔融 ,水进入上覆地幔楔状体导致部分熔融 ,形成安山岩 (Andesite  相似文献   
50.
试论陆壳增生的两种基本模式及其对比   总被引:2,自引:0,他引:2  
大陆地壳是地球形成演化的必然产物。大陆地壳由不同时代、不同类型、不同规模地体的拼贴而增生;同时已形成的大陆地壳沿着新的断裂分裂、离散而碱小。因此大陆地壳是地体拼贴增生与分裂离散的综合结果。太古代早期,原始陆壳形成后,主要通过环太平洋型与天山型两种基本模式达到陆壳的增生。环太平洋型陆壳增生模式出现于陆块的边缘,由古大陆向大洋方向单向增生,增生年代由老到新,增生地体一般都有较大距离的移置,其增生与板块的俯冲作用密切有关。天山型陆壳增生模式出现在陆块的内部,其形成与陆块的开台作用密切有关,可以但不一定伴随有俯冲作用。当古大陆沿一定方向断裂带分裂、离散。其间形成新的海槽接受碳酸盐岩和正常陆源碎屑沉积物与来自地壳深部或地幔的火山物质。由于壳下应力条件改变,两侧古陆相向运动,海槽中物质受两侧古陆碰撞挤压,形成褶皱造山带,并把两侧的古大陆“焊接”成新的、范围更大的大陆地壳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号