首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   972篇
  免费   122篇
  国内免费   237篇
测绘学   6篇
大气科学   21篇
地球物理   457篇
地质学   713篇
海洋学   26篇
天文学   14篇
综合类   37篇
自然地理   57篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   24篇
  2020年   26篇
  2019年   19篇
  2018年   19篇
  2017年   27篇
  2016年   32篇
  2015年   20篇
  2014年   38篇
  2013年   39篇
  2012年   27篇
  2011年   56篇
  2010年   62篇
  2009年   75篇
  2008年   114篇
  2007年   78篇
  2006年   56篇
  2005年   64篇
  2004年   54篇
  2003年   42篇
  2002年   42篇
  2001年   27篇
  2000年   37篇
  1999年   63篇
  1998年   46篇
  1997年   30篇
  1996年   39篇
  1995年   25篇
  1994年   20篇
  1993年   20篇
  1992年   19篇
  1991年   5篇
  1990年   12篇
  1989年   9篇
  1988年   14篇
  1987年   8篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1954年   1篇
排序方式: 共有1331条查询结果,搜索用时 78 毫秒
101.
五大连池近代火山老黑山火烧山火山喷发过程的考察研究   总被引:4,自引:0,他引:4  
作者在已有工作的基础上,以当代火山学的研究思路和观点,为恢复五大连池两个近代火山,老黑山火烧山的喷发历史过程进行了野外考察研究工作。老黑山火山锥是由三套不同的碎屑堆积物组成。在锥体的南侧、东侧和西侧以及北测和北西侧有5个熔岩溢出口,按它们形成先后关系,认为有早、中、晚三期熔岩流。本文还对老黑山火山锥上的寄生火山、结壳熔岩与渣状熔岩的分布、流动特点及形成的控制因素进行了分析讨论。最后得出结论:老黑山火山是经多期次喷发活动形成的。火烧山火山锥是一碎屑化泡沫化程度很低的浮岩块和熔岩碎块组成,同老黑山有明显区别。  相似文献   
102.
 Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events. Received: 18 August 1997 / Accepted: 19 December 1997  相似文献   
103.
 Coda Q–1 was calculated at Nevado del Ruiz Volcano (NRV) before and after two phreatomagmatic eruptions (November 1985, September 1989) and for a period of stability (May 1987) using a functional form for coda derived from a single scattering model (Sato 1977). Substantial changes were found before and after the eruptions. The highest value of Q–1 was found during the November 1985 eruption, an intermediate value for the September 1989 eruption, and the lowest value for May 1987. It seems that the changes in coda Q–1 at NRV have a still-unknown relationship with the volume or magnitude of the eruption. A relatively strong frequency dependence was found for all periods. Also Q–1 clearly changed with time, suggesting that the scattering was strong for the eruption of November 1985 and decreased for the eruption of September 1989, and that the intrinsic absorption probably increased. This suggests the possibility that crystallization is taking place in the NRV magma. The clear change of coda Q–1 before and after the eruptions at NRV also suggests the possibility that coda Q–1 is a premonitory tool of activity at this volcano. Received: 25 October 1996 / Accepted: 21 January 1998  相似文献   
104.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   
105.
 Experiments were conducted on the fragmentation of analogue low-strength porous material (plastiprin) by rapid decompression in a shock-tube-type apparatus. The porous samples (length=365 mm, cross-section dimensions 40×40 mm) pressurized by air to pressures up to 0.9 MPa, were rapidly decompressed to 0.1 MPa. Rapid decompression of samples caused fragmentation and ejection of the fragmentation products into a large volume tank. The process of analogue material fragmentation was documented using high-speed cinematography and dynamic pressure measurements. The duration of the fragmentation event is significantly shorter than that of the ejection event. The fragmentation of material precedes the acceleration of fragments. As a result of fragmentation, sub-parallel fractures are generated. The characteristic fragment size decreases as the initial pressure differential increases. The ejected fragments obtain velocities of 60 m/s. The mechanisms of material fragmentation during unloading and fragmentation wave propagation are discussed. The experimental results provide insight into the fragmentation dynamics of highly viscous magmas in which brittle failure at high strain rate is possible. Received: 23 July 1997 / Accepted: 23 November 1997  相似文献   
106.
金强 《地球科学进展》1998,13(6):542-546
我国裂谷盆地生油层中常有火山岩发育。在研究它们共生模式的基础上,利用地球化学和模拟实验等手段探索埋藏成岩期火山矿物与有机质的相互作用。初步成果表明,一些火山矿物对有机质生烃具有催化和加氢作用,可以使生油岩在较低温度和压力条件下生成较多的油气。但是不同火山矿物对油气生成的催化加氢效果及其动力学特征、这种成因类型的油气识别方法、成藏模式等,还需深入研究。因此,本研究对于丰富油气成因理论、提供新的找油领域具有重要意义。  相似文献   
107.
108.
辽西火山岩型金矿分布在中生代陆相火山盆地边缘活动带内,受辽西弧形构造带控制,为火山期后热液矿床,可初步划分为3种成因类型:次火山(斑岩)热液型(二道沟式),火山—次火山热液型(红石砬子式)和爆发角砾岩型(水泉式),成矿作用与中酸性火山—次火山岩关系密切,成矿时代为燕山期(90—110Ma)。稳定同位素研究结果表明,含矿热液为富含挥发组份和多金属成矿元素的富金水溶液,来源于地壳深部或上地幔,即高温热卤水对镁铁质、超镁铁质岩石长期侵蚀、淋滤和溶解,获取大量的金属成矿元素,在不透水层之下形成深部液态矿源层。  相似文献   
109.
 Volcan Popocatépetl is a Quaternary stratovolcano located 60 km southeast of Mexico City. The summit crater is the site of recent ash eruptions, excess degassing, and dacite dome growth. The modern cone comprises mainly pyroclastic flow deposits, airfall tephras, debris flows, and reworked deposits of andesitic composition; it is flanked by more mafic monogenetic vents. In least-degassed fallout tuffs and mafic scoria, transition metals are concentrated in phases formed before eruption, during eruption, and after eruption. Preeruptive minerals occur in both lavas and tephra, and include oxides and sulfides in glass and phenocrysts. The magmatic oxides consist of magnetite, ilmenite, and chromite; the sulfides consist of both (Fe,Ni)1-xS (MSS) and Cu–Fe sulfide (ISS). Syn- and posteruptive phases occur in vesicles in both lavas and tephra, and on surfaces of ash and along fractures. The mineral assemblages in lavas include Cu–Fe sulfide and Fe–Ti oxide in vesicles, and Fe sulfide and Cu–Fe sulfide in segregation vesicles. Assemblages in vesicles in scoria include Fe–Ti oxide and rare Fe–Cu–Sn sulfide. Vesicle fillings of Fe–Ti oxide, Ni-rich chromite, Fe sulfide, Cu sulfide, and barite are common to two pumice samples. The most coarse-grained of the vesicle fillings are Cu–Fe sulfide and Cu sulfide, which are as large as 50 μ in diameter. The youngest Plinian pumice also contains Zn(Fe) sulfide, as well as rare Ag–Cu sulfide, Ag–Fe sulfide, Ag bromide, Ag chloride, and Au–Cu telluride. The assemblage is similar to those typically observed in high-sulfidation epithermal mineralization. The fine-grained nature and abundance of syn- and/or posteruptive phases in porous rocks makes metals susceptible to mobilization by percolating fluids. The abundance of metal compounds in vesicles indicates that volatile exsolution prior to and/or during eruption played an important role in releasing metals to the atmosphere. Received: March 1997 · Accepted: 27 May 1997  相似文献   
110.
The X-drilling cores of the North Yellow Sea basin reveal two sets of Mesozoic clastic rocks, which are the dark rocks in lower part and the red rocks in upper part, respectively. There are two layers of volcanic rocks at the bottom and the upper part of the dark rock unit. The volcanic rocks at the bottom part are trachytic dacite while rocks at the upper part are clastic dacite. The zircon grains from the upper and lower units of volcanic rocks are euhedral-subhedral columnar crystals and show oscillatory zoning on cathodoluminescence images. 22 tests of zircons in the trachytic dacite from the bottom part yield an age of 141-151 Ma, with weighted mean 206Pb/238U age of 145±2 Ma. Whereas 18 tests of zircons from the sample at the upper part give 206Pb/238U ages around 139-149 Ma with weighted mean 206Pb/238U age of 141±2 Ma, which implies that the X well volcanic rocks belong to Late Jurassic-Early Cretaceous. Comparing with the age and geochemical characteristics of the Mesozoic igneous rocks in Shandong peninsula, we suggest that the igneous rocks from both the North Yellow Sea basin and Jiaolai basin were formed under same dynamic setting, i.e., the subduction related volcano arc and back-arc extension. ©, 2015, Science Press. All right reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号