首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consists of basalt, andesite, and dacite. Zircon from andesite and dacite are euhedral in shape and show typical oscillatory zoning with high Th/U ratios (0.18-0.57), implying its magmatic origin. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that the 206Pb/238U ages of zircons from andesite range within 105-106 Ma, yielding a weighted mean age of 105.5±0.8 Ma (n=14), and that 206Pb/238U ages of zircons from dacite are between 90-96 Ma, yielding a weighted mean age of 93.2±1.3 Ma (n =13). The volcanic rocks from the Suifenhe Formation are subalkaline series and show a calc-alkaline evolutionary trend with SiO2 content of 47.69%-65.47%, MgO contents of 1.42%-6.80% (Mg#= 45-53), and Na2O/K2O ratios of 1.83-3.63. They are characterized by enrichment in large ion lithophile elements (LILE) and light-rare-earth elements (LREE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE) (e.g., Nb, Ta, Ti), and low initial 87Sr/86Sr ratios (0.7041-0.7057) and positiveεNd(t) values (039-4.08), implying that they could be derived from a depleted magma source. Taken together, these results suggest that the primary magma of the volcanic rocks might originate from partial melting of the mantle wedge metasomatized by fluids derived from subducted slab under a tectonic setting of active continental margin.  相似文献   

2.
The origin, age and evolution of the Precambrian metamorphic basement of southern China provide useful insights into early crustal development. Here, we present new laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) U–Pb age data for detrital zircons from five samples of the Precambrian metamorphic basement of the Xiangshan uranium orefield. Two of these samples, from the northern Xiangshan volcanic basin, yielded a total of 140 U–Pb ages that cluster within the Neoproterozoic(773–963 Ma; 79.3% of data points), with the rest being scattered through the Paleoproterozoic and Mesoproterozoic, along with a single Archean age. These ages indicate that this basement material is associated with the Cathaysia Block. In comparison, the 172 concordant ages from the other three samples from the southern part of the Xiangshan volcanic basin cluster within the Neoproterozoic(767–944 Ma; 59.8%) as well as the Proterozoic(37.8%) and the Archean(2502–2712 Ma; 14.5%). These samples are also free of zircons with Grenvillian ages, indicating that these units are associated with the southeastern Yangtze Block. Combining these data with the geochemistry of these units, which suggests that the metamorphosed sedimentary rocks within the northern and southern parts of the Xiangshan basin have a common component from a magmatic island arc that formed during the early Neoproterozoic, we infer that the basin was located along the boundary between the Cathaysian and Yangtze blocks. In addition, the zircons within the samples from the southern and northern parts of the Xiangshan basin show different pre-Neoproterozoic(963 Ma) age populations but similar postNeoproterozoic zircon populations, indicating that the amalgamation of the Cathaysian and Yangtze blocks occurred after the Neoproterozoic(960 Ma), with magmatism peaking at 830 Ma and rifting starting at ~770 Ma, leading to the subsequent deposition(from bottom to top) of the Shenshan, Kuli, and Shangshi formations.  相似文献   

3.
The Neoproterozoic Tonian strata(ca.870-725 Ma)in the western Jiangnan Orogen archive the records of sedimentary provenance and tectonic setting which can be used to understand the geological evolution of the South China Continent.These strata are separated into the basement and cover sequences by a regional angular unconformity.The basement sequence can be subdivided into the lower and the upper parts by the widespread interbedded ca.840 Ma basalt with pillow structure.In the present work,234 concordant detrital zircon analyses are obtained from three Tonian sandstone samples in the Fanjingshan district,Guizhou Province.Combined with previous results,a total of 1736 analyses of detrital zircon U-Pb ages derived from 12 formations of Tonian strata in the western Jiangnan Orogen are used to decipher the integrated sedimentary and tectonic histories.The zircons from the lowermost part of the basement sequence(the Yujiagou Formation)show oval morphology and display two Paleoproterozoic age peaks at 2325 Ma and 1845 Ma which are similar with the detrital zircon age peaks from the Late Paleoproterozoic to Early Mesoproterozoic Dongchuan/Dahongshan/Hekou groups,suggesting a passive margin basin in which the sediments were mainly sourced from the southwestern Yangtze Block.However,the zircon age population of the lower part of the basement sequence(the Xiaojiahe,Huixiangping formations and their equivalents)indicates the sedimentary derivation from bidirectional sources(the ca.870 Ma arc materials in the south and the old detritus from the southwestern Yangtze Block)which is consistent with a back arc setting for the deposition of the sediments.Zircons from the upper part of the basement sequence(the Duyantang Formation and its equivalent)show euhedral and subangular morphology and display a unimodal age peak at ca.835 Ma.This sequence was possibly deposited in a convergent setting and the detritus were came from the locally distributed syn-collisional igneous rocks.The lower part of the cover sequence(the Xinzhai and Wuye formations and their equivalents)shows a distinct zircon age peak at 815—809 Ma and two subordinate peaks at 2485 Ma and 2018 Ma,suggesting that the basin had gradually transformed into a continental rift basin and received the detritus from the ca.815 Ma post-collisional magmatic rocks as well as from different Paleoproterozoic source rocks in the northern Yangtze Block.We propose a tectonic evolution model that envisages eruption of ca.840 Ma basalt in a back arc basin that existed during ca.870-835 Ma,an angular unconformity was formed during amalgamation of the Yangtze Block and the Cathaysia Block at ca.835-820 Ma and the rifting of the South China Continent was initiated at ca.800 Ma.Our study concludes that the South China Continent was formed on the periphery of the Rodinia supercontinent.  相似文献   

4.
The Huangtuling hypersthene-garnet-biotite gneiss at Luotian County, Hubei Provine, is a typicalgranulite-facies rock of the Dabie Group Complex in the Dabie orogenic belt. Investigations on the morphology andoccurrence of zircons and their internal structures shown in the thin sections lead to the recognition of three types ofzircons, which are in good agreement with the types identified on the basis of morphology, colour and external fea-tures from the related zircon concentrates. The observation of zircons in the rock reveals that part of type 1 zirconsshow signs of a double-layered structure. The interval part existed in the protolith prior to the granulite-facies meta-morphism. Type 2, the prismatic zircons which mainly occur in garnet and hypersthene are metamorphic minerals ofthe granulite-facies metamorphism. Type 3, the round multifaceted zircons in felsic minerals and biotite, are proba-bly attributed to a later geological event related to migmatization. The ~(207)Pb/~(206)Pb zircon dating by direct evaporationon (thermal evaporation ion mass spectrometer) yields ages ranging from 2814 Ma to 1992 Ma. The age discrepancyamong these different zircon types is conspicuous. The yellow-brown(type 1) zircons give ages of 2814±29 Ma to2527±6 Ma, the prismatic euhedral zircons (type 2), 2456±7 Ma to 2254±4 Ma, and the round multifaceted zircons(type 3), 1992±10 Ma. The results are geologically interpreted in consideration of the complicated behaviours of zir-cons during Precambrian geological evolution of the Dabie area. (1) If the protolith of the gneiss is a sedimentaryrock, then type 1 zircons are clastic ones and the ages 2814±29 Ma and 2811±27 Ma may reflect the minimum age ofthe rocks of its source region. also the first geological event in the area. Sedimentation of the protolith occurred be-tween 2814 Ma and 2527 Ma, probably close to 2814 Ma. If the protolith is a volcanic rock, then the formation age ofthe supracrustal rocks of the Dabie Group Complex is around 2814 Ma. The age 2456±7 Ma reflects the time whenthe granulite-facies metamorphism took place. The later migmatization event is dated at aboat 1992±10 Ma, and isprobably the latest early Precambrian event in the area. The present work provides geochronological evidence for the existence of the Dabie Archaean craton, whichhad probably experienced 3 or 4 geological events during its early Precambrian evolution.  相似文献   

5.
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area.Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China.Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning,a number of researchers have focused on Mesozoic volcanic events.The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb.The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age,the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma,the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma,respectively. Combined with the data of recent publication on volcanic rocks ages;the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods:119 Ma,113 Ma and 103 Ma.The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province,establishing Mesozoic volcanic event sequence,discussing geological tectonic background,and surveying the relation between noble metals to the Cretaceous volcanic rocks,but also offers important information of Mesozoic volcanism in northeastern China.  相似文献   

6.
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.  相似文献   

7.
塔里木盆地瓦基里塔格辉长岩40Ar-39Ar年龄 及其意义   总被引:3,自引:2,他引:1  
Wajilitag mountains, about 40km southeast to Bachu town, is located at western Tazhong tectonic belt (Central Rise), Tarim basin, NW China. There exists a set of slightly metamorphic unfossiliferous clastic rocks at Wajilitag. Basic-ultrabasic intrusions are developed in the clastic rocks. Two gabbro specimens were sampled from the intrusions. Plate ages of 825.0±2.0Ma and 837.3±2.0Ma and respective isochronal ages of 821.4±8.0Ma and 833.3±15.3Ma were got after Ar-Ar analysis. This is the first group of reliable Precambrian isotopic ages in the inner part of Tarim basin. It is an important data for study on the age, basement component and tectonic type, etc. of Tarim basin, and also significant for the petroleum exploration planning in that area.  相似文献   

8.
The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.This study reports new zircon data obtained from Chaillu massif and N'goutou complex,which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite,respectively.Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images.Zircons with lower common lead abundances tend to be distributed close to the concordia curve.Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve.Based on the Th/U ratios of zircons,these ages correspond to the protolith ages of the orthogneisses,and the zircons are not metamorphic in origin.Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group.The granitoids exhibit chemical composition of A-type granite affinity.Half of zircons separated from the granite are non-luminous,and the remaining half exhibit obscure internal textures under cathode-luminescence observation.All zircon grains contain significant amounts of common lead;the lead isotopic variability is probably attributed to the mixing of two components in the zircons.The zircon radiogenic ~(207)Pb/~(206)Pb ratio is 0.13707 ± 0.0010.corresponding to a ~(207)Pb/~(206)Pb age of 2191 ± 13 Ma.This constrains the minimum depositional age of the FA and FB units.Furthermore,the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils.Based on our age constraints,these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event,in concert with global scale oxidation event encompassing the Snowball Earth.  相似文献   

9.
The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.  相似文献   

10.
U–Pb analysis of zircons from igneous rocks in the Elashan Mountain, easternmost segment of the East Kunlun Orogen yielded 252–232 Ma. Geochemically, these rocks are mainly high in SiO_2, K_2O and K_2O+Na_2O contents, low in P_2O_5 and TiO_2 contents, depleted in Ba, Sr, P, Ti and enriched in U, Hf, Zr, showing features of I–type granite. The zircon εHf(t) values of the Early Triassic Jiamuge'er rhyolite porphyry(252±3 Ma) are positive(+1.6 to +12.1), suggesting a juvenile crustal source mixing with little old crustal component, and the zircon εHf(t) values of the Middle Triassic Manzhang'gang granodiorite(244±3 Ma) and Dehailong diorite(237±3 Ma) are predominately negative(-8.4 to +1.0), indicating an older crustal source. In comparison, the zircon εHf(t) values of the Late Triassic syenogranites from Suigen'ergang(234±2Ma), Ge'ermugang(233±2 Ma) and Yue'ergen(232±3 Ma) plutons vary from-3.8 to +5.0, suggesting a crust-mantle mixing source. From Early–Middle Triassic(252–237 Ma) to Late Triassic(234–232 Ma), the geochemical characteristics of these rocks show the change from a subduction–collision setting to a post-collision or within-plate setting. By comparing of these new age data with 77 zircon U–Pb ages of igneous rocks of the eastern part of East Kunlun orogen from published literatures, we conclude that the igneous rocks of Elashan Mountain and these of the eastern part of East Kunlun Orogen belong to one magmatic belt. All these data indicate that the Triassic magmatic events of the eastern part of East Kunlun Orogen can be divided into three stages: 252–238 Ma, 238–226 Ma and 226–212 Ma. Statistically, the average εHf(t) values of the threestage igneous rocks show a tendency, from the old to young, from-0.75±0.25 to lower-2.65±0.52 and then to-1.22±0.25, respectively, which reveal the change of their sources. These characteristics can be explained as a crust-mantle mixing source generated in a subductional stage, mainly crust source in a syn–collisional stage and a crust-mantle mixing source(lower crust with mantle-derived underplating magma) in a post-collisional stage. The identification of these three magmatic events in the Elashan Mountain, including all the eastern part of East Kunlun Orogen, provides new evidence for better understanding of the tectonic evolution of the northward subduction and closure of the Paleo-Tethyan(252–238 Ma), the collision of the Songpan–Ganzi block with the southern margin of Qaidam block(238–226 Ma), and the post–collisional setting(226–212 Ma) during the Early Mesozoic period.  相似文献   

11.
Based on the volume magnetic susceptibility and specific gravity measurements and mineral and lithologic identification results for 540 samples,the rock type,density,and magnetic susceptibility of rocks from northern Borneo were analyzed,and the applicability of gravity and magnetic data to the lithologic identification of the Mesozoic strata in the southern South China Sea was assessed accordingly.The results show that there are 3 types and 25 subtypes of rocks in northern Borneo,mainly intermediate-mafic igneous rocks and exogenous clastic sedimentary rocks,with small amounts of endogenous sedimentary rocks,felsic igneous rocks,and metamorphic rocks.The rocks that are very strongly-strongly magnetic and have high-medium densities are mostly igneous rocks,tuffaceous sandstones,and their metamorphic equivalents.The rocks that are weakly magnetic-non-magnetic and have medium-very low densities are mostly conglomerates,sandstones,siltstones,mudstones,and coal.The rocks that are weakly magnetic-diamagnetic and have highmedium densities are mostly limestones and siliceous rocks.The Cenozoic rocks are characterized by low densities and medium susceptibilities;the Mesozoic rocks are characterized by medium densities and medium-high susceptibilities;and the pre-Mesozoic rocks are characterized by high densities and low magnetism.Based on these results and the distribution characteristics of the various rock types,it was found that the pre-Mesozoic rocks produce weak regional gravity anomalies;the Mesozoic sedimentary rocks produce negative regional gravity anomalies;whereas the Mesozoic igneous rocks produce positive regional gravity anomalies;and the Cenozoic igneous rocks produce positive regional gravity anomalies.The regional high magnetic anomalies in the southern part of the South China Sea originate from the Mesozoic mafic igneous rocks and their metamorphic equivalents;and the regional medium magnetic anomalies may be produced by the felsic igneous rocks and their metamorphic equivalents.Accordingly,the identification of the Mesozoic lithology in the southern South China Sea shows that the Mesozoic sedimentary rocks are distributed over a large area of the southern South China Sea.Thus,it is concluded that the Mesozoic strata in this area have the potential for oil and gas exploration.  相似文献   

12.
<正>Objective The Xiemisitai area located in the northern part of the West Junggar,Xinjiang is an important component of the central Asian metallogenic domain.Recent studies show that the formation age of acid volcanic and intrusive rocks in the Xiemisitai area mainly ranges from the Late Silurian to the Early Devonian,and the age of the mineralized dacite porphyry is Early Silurian.These rocks are the  相似文献   

13.
Abstract: The Shijuligou deposit was separated by an arcuate ductile shear zone cross the center of the deposit region, resulting in the difference between the southern and northern ore bodies. The lead (Pb) isotopic data of ores of the Shijuligou copper deposit have averages of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in 17.634, 15.444, and 37.312, respectively. It has been shown that ore-forming metals originated from intrusive and extrusive rocks in the upper part of ophiolites. The sulfur isotopic data of pyrite and chalcopyrite in the northern part change from +7.61‰ to +8.09‰ and +4.95‰ to +8.88‰ in the southern part. Isotopes of δ18O in the Shijuligou copper deposit are between +11.1‰ and +18.6‰, with the calculated δ18OH2O at +0.65‰. It is suggested that the mineralized fluid is a mixture of magma fluid, meteorological water, and seawater through circulating and leaching metals from the volcanic rocks. The zircon uranium-lead (U–Pb) dating of gabbro is 457.9±1.2 Ma, and the lower crossing age of the discordant and concordia curves of pyroxene spilite of zircon is 454±15 Ma. It is indicated that the Shijuligou deposit formed in a new ocean crust (ophiolite) of the back-arc basin in the late Ordovician. Mineralization should occur in the intermittence period after strong volcanic activity, and the age should be the late Ordovician. Moreover, the mineralization of ophiolite-hosted massive sulfide deposits in the ancient orogenic belt of the late Ordovician in the northern Qilian Mountains was controlled by the primary fault/fracture, with the forming of a metallogenic hydrothermal system by a mixture of volcanic magma fluid and seawater, which circularly leached the metallogenic metals from the volcanic rocks, resulting in their accumulation. The ore bodies were transformed with morphology and metallogenic elements. Jasperoid is an important sign for prospecting such deposits. There were many island arcs in the continent of China. This study provides evidence for understanding and exploration of ophiolite-hosted massive sulfide deposits in western China, especially in the area of northern Qilian Mountains.  相似文献   

14.
The Neoproterozoic Jiangnan orogen plays an important role in the study of the Precambrian tectonic evolution of South China. The tectonic nature of the Neoproterozoic sedimentary basins is still controversial, due to poor understanding of the sedimentary sequences and the lack of geochronological data. Here, we present sedimentological, provenance and geochronological data from the Heshangzhen Group in the eastern Jiangnan orogen. Sedimentological analysis shows that the Luojiamen Formation was deposited in a submarine fan, and the overlying Hongchicun Formation was deposited in front of a fan delta. The youngest detrital zircons constrain the lower Luojiamen and Hongchicun formations with ages of 827.3 ± 8.4 Ma and 825 ± 12 Ma, respectively. The sandstones of the Luojiamen Formation are characterized by a large number of intermediate to felsic volcanic grains, suggesting a volcanic arc source. In contrast, quartz and sedimentary lithic grains increase in the Hongchicun Formation, showing a new input from a collisional orogenic source. Detrital zircon from six sandstone samples in the Luojiamen and Hongchicun formations yield similar age spectra of 930–820 Ma with a peak at ca. 845–860 Ma, with one main cluster at 930–820 Ma. Detrital zircons of 930–845 Ma show a positive value of εHf(t)(+2.4 to +11, mean +7.6), which is similar to the volcanic arc of the nearby Shuangxiwu Group. There are a minor group of zircons with U-Pb ages ranging from 820 Ma to 845 Ma from the middle part of the Luojiamen Formation and Hongchicun Formation, with εHf(t) values between-20 to +2.4, which are consistent with the characteristics of the Shuangqiaoshan Group. within light of the bidirectional paleocurrents in the Luojiamen Formation, it is speculated that the zircons of 820–845 Ma were recycled from the Shuangqiaoshan Group, which is derived from a continental arc to the northwest. Our data suggests that the Luojiamen Formation was formed in an inter-arc basin, while the Hongchicun Formation was formed in an accretionary wedge-top basin. When juxtaposed with the conglomeratic characteristics at the bottom of the Luojiamen Formation, it is believed that the unconformity represented by the ‘Shen Gong Movement' reflects the rapid erosion and accumulation process of island arc volcanic material. The disconformity between the Luojiamen and Hongchicun formations is the imprint of transition from inter-arc basin to accretionary wedge-top basin,which represents the collision between the Shuangxiwu arc and the Yangtze Plate.  相似文献   

15.
Investigation of the petrogenesis and the origin of zircons from the volcanic rocks of the Liujiaping Group of the back-Longmenshan tectonic belt in the northwest margin of the Yangtze Block is conducted by analysis of U–Pb geochronology and geochemistry. Results show that selected zircons are characterized by internal oscillatory zonings and high Th/U ratios (0.43–1.18), indicating an igneous origin. Geochronological results of LA–ICP–MS U–Pb dating of the Liujiaping Group zircons yield an age of 809 ± 11 Ma (MSWD = 2.2), implying that the volcanic rocks were formed in the Late Neoproterozoic. Geochemical analysis shows that the rocks are calc-alkaline, supersaturated in Al, and metaluminous to weakly peraluminous. Rare-earth elements are present at high concentrations (96.04–265.48 ppm) and show a rightward incline and a moderately negative Eu anomaly, similar to that of continental rift rhyolite. Trace element geochemistry is characterized by evident negative anomalies of Nb, Ta, P, Th, Ti, inter alia, and strong negative anomalies of K, Rb, Sr, et al. We conclude that the Liujiaping Group volcanic rocks resulted from typical continental crust source petrogenesis and were formed in a continental margin setting, which had no relation to subduction, and thus, were the products of partial melting of the lower crust due to crustal thickening caused by active continental margin subduction and arc–continent collision orogeny in the northwestern Yangtze Block and were triggered by the breakup of the Rodinia supercontinent during the Neoproterozoic.  相似文献   

16.
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating,including basalt and andesite from Borehole SCSV1 and volcanic agglomerate from Borehole SCSV2,respectively.A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene,in which the pre-Paleocene data dominate.The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin.Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones,and have REE features of crustal zircon.Zircon U-Pb dates of 2518–2481 Ma,1933– 1724 Ma,and 1094–1040 Ma from the SCSV1 volcanics,and 2810–2718 Ma,2458–2421 Ma,and 1850 –993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea,well comparable with age records dated from the Cathaysia block.The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia,respectively.The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2.The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events.Their age signatures from the SCSV1 cover 266.5±3.5 Ma,241.1±6.0 Ma,184.0±4.2 Ma,160.9±4.2 Ma and 102.8±2.6 Ma,and from the SCSV2 are 244±15 Ma,158.1±3.5 Ma,141±13 Ma and 96.3±2.1 Ma.Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement,Caledonian orogeny,and Indosinian orogeny to Yanshannian magmatism.This process can be well comparable with the tectonic evolution of South China,largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.  相似文献   

17.
Over the area between Beipiao City and Yixian County, Hebei Province, there outcrop trachyte-trachyandesite volcanic rocks of the Upper Jurassic Zhangjiakou Formation and sedimentary series of the Dabeigou Formation. The ~(40)Ar-~(39)Ar datings of the volcanic rocks give an age of 143. 9 Ma. The most recently defined basalt member in the lower part of the Cretaceous Yixian Formation was dated at 137-129 Ma, while the andesite member in the upper part at 126-120 Ma. It is ascertained that  相似文献   

18.
Groundwater Systems and Resources in the Ordos Basin, China   总被引:1,自引:1,他引:0  
The Ordos Basin is a large-scale sedimentary basin in northwestern China.The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks,Lower Paleozoic carbonate rocks,Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits.The total thickness is up to 6000 m.Three groundwater systems are present in the Ordos Basin,based on the geological settings,i.e.the karst groundwater system,the Cretaceous clastic groundwater system and the Quaternary groundwater system.This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.  相似文献   

19.
There occurred rifting on Hainan Island in the Late Palaeozoic. Bimodal volcanic rocks composed ofbasalt and rhyolite developed in the Carboniferous. Widespread in the Late Palaeozoic formations are severallayers of fluvial intermontane conglomerates whose distribution is controlled by rift faults. The Late Palaeozoicdeposits dominaled by clastic rocks are, for a major part, of marine facies and of continental facies in the lowerand upper parts. Lithological and lithochemical studies indicate that the detrital rocks were formed in atectonic setting of continental rifting. The evolution of the rifting terminated at the stage of transition form anintra continental rift to an intercontinental one and the rift basin was a bay opening westward to the sea.  相似文献   

20.
Radio-isotopic analysis of single zircons from two early Telychian K-bentonites, one of which is among the most widespread Lower Paleozoic volcanic ash falls in north- ern Europe, yields overlapping weighted mean 206pb/238U ages of 438. 7± 1.0 Ma and 437.8 ± 0.5 Ma, respectively. The former age is from zircons of the Osmundsberg K-bentonite from the type locality at Osmundsberget in the Siljan area of central Sweden where it occurs in the lower part of the Spirograptus tur- riculatus Graptolite Zone and in the lower part of the Angochitina longicollis Chitinozoan Zone. Zircons giv- ing the latter age are from a bed previously identified as the Osmundsberg K-bentonite at the Kallholn Quarry in the same area. Based on new biostratigraphic data, the latter bed is now considered to be slightly younger than the Osmundsberg K-bentonite. The dated stratigraphic level of the ash layers is slightly younger than the base of the Telychian Stage and thus represents a minimum age for the Aeronian/Telychian Stage boundary. A U-Pb age of 〉 438 Ma for the base of this stage, however, is older and in conflict with estimates in the most recent compilation of the Silurian time scale. In view of the fact that only three radio-isotopic dates from the entire Llan- dovery have been previously accepted, this new and biostratigraphically exceptionally well-controlled radio-isotopic date fills an important gap in the Lower Silurian geochronology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号