首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   5篇
  国内免费   7篇
测绘学   1篇
大气科学   14篇
地球物理   48篇
地质学   5篇
海洋学   86篇
天文学   40篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   16篇
  2012年   5篇
  2011年   9篇
  2010年   8篇
  2009年   20篇
  2008年   11篇
  2007年   10篇
  2006年   10篇
  2005年   4篇
  2004年   5篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   15篇
  1999年   3篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   17篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
排序方式: 共有196条查询结果,搜索用时 406 毫秒
31.
The theoretical background of the wave-current interactions, including the transformation of the wave spectrum and breaking waves due to currents, are first presented in this work. In the next part of the work, experimental data resulted from studies performed in an offshore wave basin of the Danish Hydraulic Institute concerning the wave-current interactions were presented in parallel with some wave model simulations performed in similar conditions. SWAN, which is presently the state-of-the-art spectral model for the wave transformations, was adopted for performing numerical simulations. In general, a good agreement was encountered between the experimental data and the simulation results.  相似文献   
32.
The main objective of this study is the characterization of the wave climate in the Southern Brazilian Shelf (SBS) based on a thorough review of existing field data and on numerical modeling experiments. A quantitative knowledge about the wave climate of this area is important to understand the mechanisms driving episodic mud bank attachments to the sandy shore, and the interaction of these banks with the flow and waves. The statistical analysis of existent data on the wave climate throughout the SBS indicates that the predominant wave directions are 100° and 160° (E–SE), with wave heights varying between 1 and 1.50 m. The wave period varies between 6 and 14 s, with predominance of mean wave period of 8 s (sea conditions) and 12 s (swell conditions). The spectral wave model SWAN version 40.41 [Booij, N., Haagsma, I.J.G., Holthuijsen, L.H., Kieftenburg, A.T.M.M., Ris, R.C., van der Westhuysen, A.J., Zijlema, M., 2004. SWAN Cycle III Version 40.41 Users Manual, Delft University of Technology, Delft, The Netherlands, p. 118, http://fluidmechanics.tudelft.nl/swan/index.htm] is used to simulate the wave climate for the region. Special attention is given to Cassino Beach, describing the wave climate observed during the Cassino Experiment, carried out in 2005. The verification of the standard SWAN model was carried out based on the comparison between numerical modeling results and available data of significant wave height, peak period, mean wave direction and energy density for the period relative to February of 1998. Results showed satisfactory model predictions of significant wave height and reasonably accurate predictions of peak spectral wave period and direction. The model performance is also considered satisfactory in the representation of the wave climate of the region when the wave spectrum has only one spectral peak, but presents limitations for bimodal wave spectrum. When two spectral peaks are observed, the SWAN model agrees with the spectral level observed in the low frequency, but underestimates the spectral level in the high-frequency band. When considering the presence of mud deposits in the area, model results predict that although the presence of mud attenuates most of the wave energy on the low frequency peak, it has a smaller effect in attenuating the wave energy on the high frequency peak.  相似文献   
33.
The interaction between two important mechanisms which causes streaming has been investigated by numerical simulations of the seabed boundary layer beneath both sinusoidal waves and Stokes second order waves, as well as horizontally uniform bottom boundary layers with asymmetric forcing. These two mechanisms are streaming caused by turbulence asymmetry in successive wave half-cycles (beneath asymmetric forcing), and streaming caused by the presence of a vertical wave velocity within the seabed boundary layer as earlier explained by Longuet-Higgins. The effect of wave asymmetry, wave length to water depth ratio, and bottom roughness have been investigated for realistic physical situations. The streaming induced sediment dynamics near the ocean bottom has been investigated; both the resulting suspended load and bedload are presented. Finally, the mass transport (wave-averaged Lagrangian velocity) has been studied for a range of wave conditions. The streaming velocities beneath sinusoidal waves (Longuet-Higgins streaming) is always in the direction of wave propagation, while the streaming velocities in horizontally uniform boundary layers with asymmetric forcing are always negative. Thus the effect of asymmetry in second order Stokes waves is either to reduce the streaming velocity in the direction of wave propagation, or, for long waves relative to the water depth, to induce a streaming velocity against the direction of wave propagation. It appears that the Longuet-Higgins streaming decreases as the wave length increases for a given water depth, and the effect of wave asymmetry can dominate, leading to a steady streaming against the wave propagation. Furthermore, the asymmetry of second order Stokes waves reduces the mass transport (wave-averaged Lagrangian velocity) as compared with sinusoidal waves. The boundary layer streaming leads to a wave-averaged transport of suspended sediments and bedload in the direction of wave propagation.  相似文献   
34.
35.
The sheltering effect of the Balearic Islands in the hindcast wave field was studied for typical Mediterranean wave situations of Llevant, Tramuntana and Mestral and for mild conditions such as the Garbí and Ponent winds. For this purpose, a third generation wave model was applied to the Mediterranean Sea and different patterns of the sheltered areas were found for the various representative situations depending on the wind variability and on the magnitude of the wind speed. From the analysis it was concluded that the sheltered zones created during storms generally persist for short periods of time of the order of 6 h, possibly reaching a maximum of 12 h. In contrast with earlier results obtained for swell dominated ocean areas, it was observed that in this area, due to the short fetches the sea states are mainly local wind seas and thus the wave field behind the islands depends on the local wind.  相似文献   
36.
37.
This paper presents measurements and analysis of fluid velocity within the context of spilling waves. The data have been collected using 2-D Laser Doppler Velocimetry in pre-breaking monochromatic waves generated in a wave tank. The analysis is performed using orthogonal wavelets and, in addition to the classical criterion adopted in applying Taylor's hypothesis, a new algorithm is proposed for the eduction of eddies at different length scales. The contribution of different scale vortices is computed, and phase is resolved. Microvortices (smaller than the breaker height but larger than the dissipative vortices) and mid-size vortices (with length ranging from the breaker height to the wave length) carry out most turbulence energy under wave crest. The phase average vorticity and strain rate is computed at different wave lengths, with the analysis of intermittence. The intermittency factor shows spikes in the wave crest, especially for turbulence in small vortices.  相似文献   
38.
Open coast storm surge water levels consist of wind setup due to wind shear at the water surface; a wave setup component caused by wind induced waves transferring momentum to the water column; an atmospheric pressure head component due to the atmospheric pressure deficit over the spatial extent of the storm system; a Coriolis forced setup or setdown component due to the effects of the rotation of the earth acting on the wind driven alongshore current at the coast; a possible seiche component due to resonance effects initiated by moving wind system, and, if astronomical tides are present, an astronomical tide component (although the tide is typically considered to be a forced astronomical event and not really a direct part of the external wind-driven meteorological component of storm surge). Typically the most important component of a storm surge is the wind setup component, especially on the U.S. East Coast and the Gulf of Mexico shorelines. In many approaches to storm surge modeling, a constant depth approximation is invoked over a limited step size in the computational domain. The use of a constant depth approximation has received little attention in the literature although can be very important to the resulting magnitude of the computed storm surge. The importance of discrete step size to the wind setup storm surge component is considered herein with a simple case computation of the wind setup component on a linear slope offshore profile. The present study findings show that the constant depth approximation to wind setup storm surge estimation is biased on the low side (except in extremely shallow water depths) and can provide large errors if discrete step size is not sufficiently resolved. Guidance has been provided on the error that one might encounter for various step sizes on different slopes.  相似文献   
39.
A simple analytical model of wave propagation has been developed in order to study the potential sediment transport patterns due to the action of currents and waves in the neighborhood of cylindrical structures as well inside a group of these structures. The attention is focused on the study of Trafalgar offshore windfarm, a case in which it has been necessary to analyze the flow trough porous structures in order to model fish growing-cages planned to be installed at each aerogenerator structure. The results are obtained by averaging over one period of wave in order to evaluate the net potential sediment transport. The analysis of the results reveals how the processes of wave diffraction and reflection give rise to periodic patterns of sediment transport around and between the structures.  相似文献   
40.
In the recent paper by J.P. Le Roux [Coastal Engineering 54 (2007) 271–277], the author provides a simplified approach to calculating the depth, length, and height of waves at the onset of depth-induced breaking (i.e. at the breaker line). However, the proposed methodology and the comparisons to other methods suffer from a large number of inconsistencies and basic calculation errors. In addition, there are a number of erroneous physical interpretations and many of the conclusions are based on erroneous data. The remaining conclusions are either not new or based on circular logic, such as to render them moot. In the following, we will not attempt to point out all the errors or inconsistencies that we found, instead we focus on major points of contention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号