首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   149篇
  国内免费   73篇
测绘学   42篇
大气科学   122篇
地球物理   355篇
地质学   127篇
海洋学   8篇
天文学   2篇
综合类   26篇
自然地理   234篇
  2024年   5篇
  2023年   7篇
  2022年   18篇
  2021年   56篇
  2020年   58篇
  2019年   38篇
  2018年   33篇
  2017年   38篇
  2016年   31篇
  2015年   32篇
  2014年   56篇
  2013年   91篇
  2012年   52篇
  2011年   52篇
  2010年   37篇
  2009年   31篇
  2008年   37篇
  2007年   32篇
  2006年   25篇
  2005年   31篇
  2004年   27篇
  2003年   14篇
  2002年   16篇
  2001年   21篇
  2000年   16篇
  1999年   11篇
  1998年   13篇
  1997年   11篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1983年   2篇
排序方式: 共有916条查询结果,搜索用时 15 毫秒
61.
Information about seasonal crop water consumption is useful to develop the appropriate irrigation scheme. Measurements of energy balance components using the Bowen ratio method were made for a complete growing season at a vineyard in the arid region of northwest China. Vine in the experiment was furrow‐irrigated using a trellis system. The measured evapotranspiration was compared with estimates using the soil water balance method. It is shown that the Bowen ratio method provided accurate estimates of evapotranspiration from the vineyard and this requires that the Bowen ratio system is appropriately installed. The energy balance components showed typical diurnal pattern with peaks that occurred around the midday, except for the ground heat flux which delayed its peak by 2–3 h. The sensible heat flux was greater than the latent heat flux and followed the net radiation closely. The ratio of the latent heat flux to net radiation was low in the early growing season and increased over time. Under the limited irrigation experienced in the vineyard, the latent heat flux was controlled by available soil moisture and the total evapotranspiration in the growing season was 253 mm. The seasonal progression of the crop coefficient is similar to that reported in the literature, with the maximum occurring during the month of September. The crop coefficient can be estimated as a non‐linear function of day of year (DOY) and used to estimate evapotranspiration from vineyards in the region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
62.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
63.
Meteorological and environmental data measured in semiarid watersheds during the summer monsoon and winter periods were used to study the interrelationships among flux, meteorological and soil water variables, and to evaluate the effects of these variables on the daily estimation of actual evapotranspiration (AET). The relationship between AET and potential evapotranspiration (PET) as a function of soil water content, as suggested by Thornthwaite–Mather and by Morton, was studied to determine its applicability to the study area. Furthermore, multiple linear regression (MLR) analysis was employed to evaluate the order of importance of the meteorological and soil water factors involved. The results of MLR analysis showed that the combined effects of available energy, soil water content and wind speed were responsible for more than 70% of the observed variations in AET during the summer monsoon period. The analyses also indicate that the combined effects of available energy, vapour pressure deficit and wind speed were responsible for more than 70% of the observed variations in AET during the winter period. However, the test results of two different approaches, using the relationships between AET and PET as a function of soil water content, indicated some inadequacy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
64.
A non-dimensional relative sensitivity coefficient was employed to predict the responses of reference crop evapotranspiration (ET0) to perturbation of four climate variables in Tao'er River Basin of the northeastern China. Mean monthly ET0 and yearly ET0 from 1961 to 2005 were estimated with the FAO-56 Penman-Monteith Equation. A 45-year historical dataset of average monthly maximum/minimum air temperature, mean air temperature, wind speed, sunshine hours and relative humidity from 15 meteorological stations was used in the analysis. Results show that: 1) Sensitivity coefficients of wind speed, air temperature and sunshine hours were positive except for those of air temperature of Arxan Meteorological Station, while those of relative humidity were all negative. Relative humidity was the most sensitive variable in general for the Tao'er River Basin, followed by sunshine hours, wind speed and air temperature. 2) Similar to climate variable, monthly sensitivity coefficients exhibit large annual fluctuations. 3) Sensitivity coefficients for four climate variables all showed significant trends in seasonal/yearly series. Also, sensitivity coefficients of air temperature, sunshine hours and wind speed all showed significant trends in spring. 4) Among all sensitivity coefficients, the average yearly sensitivity coefficient of relative humidity was highest throughout the basin and showed largest spatial variability. Longitudinal distribution of sensitivity coefficients for air temperature, relative humidity and sunshine hours was also found, which was similar to the distribution of the three climate variables.  相似文献   
65.
Potential evapotranspiration (PET) is a key input to hydrological models. Its estimation has often been via the Penman–Monteith (P–M) equation, most recently in the form of an estimate of reference evapotranspiration (RET) as recommended by FAO‐56. In this paper the Shuttleworth–Wallace (S–W) model is implemented to estimate PET directly in a form that recognizes vegetation diversity and temporal change without reference to experimental measurements and without calibration. The threshold values of vegetation parameters are drawn from the literature based on the International Geosphere–Biosphere Programme land cover classification. The spatial and temporal variation of the LAI of vegetation is derived from the composite NOAA‐AVHRR normalized difference vegetation index (NDVI) using a method based on the SiB2 model, and the Climate Research Unit database is used to provide the required meteorological data. All these data inputs are publicly and globally available. Consequently, the implementation of the S–W model developed in this study is applicable at the global scale, an essential requirement if it is to be applied in data‐poor or ungauged large basins. A comparison is made between the FAO‐56 method and the S–W model when applied to the Yellow River basin for the whole of the last century. The resulting estimates of RET and PET and their association with vegetation types and leaf area index (LAI) are examined over the whole basin both annual and monthly and at six specific points. The effect of NDVI on the PET estimate is further evaluated by replacing the monthly NDVI product with the 10‐day product. Multiple regression relationships between monthly PET, RET, LAI, and climatic variables are explored for categories of vegetation types. The estimated RET is a good climatic index that adequately reflects the temporal change and spatial distribution of climate over the basin, but the PET estimated using the S–W model not only reflects the changes in climate, but also the vegetation distribution and the development of vegetation in response to climate. Although good statistical relationships can be established between PET, RET and/or climatic variables, applying these relationships likely will result in large errors because of the strong non‐linearity and scatter between the PET and the LAI of vegetation. It is concluded that use of the implementation of the S–W model described in this study results in a physically sound estimate of PET that accounts for changing land surface conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
66.
蒸散发是水圈、大气圈和生物圈中水分循环和能量交换的纽带。在全球尺度上,蒸散发约占陆地降水总量的60%;作为其能量表达形式,潜热通量约占地表净辐射的80%。随着通量观测技术的发展,全球长期持续的观测数据得以获取和共享,近年来基于数据驱动的蒸散发遥感反演方法取得了较好的研究进展。本文针对数据驱动的蒸散发遥感反演方法和产品,从经验回归、机器学习和数据融合3个方面展开,对现有的研究进展进行了梳理、归纳和总结,并从驱动数据、反演方法、已有产品等方面指出目前仍存在的问题和不足。未来仍需开展数据驱动的高时空分辨率的蒸散发遥感反演方法的研究,有效考虑地表温度和土壤水分等可以指示地表蒸散发短期变化的重要信息,同时加强基于过程驱动的物理模型与数据驱动的模型的结合,使两类模型能互为补充、各自发挥所长,共同推动蒸散发遥感反演研究水平的进步。  相似文献   
67.
滕州市近50年气候干湿变化   总被引:1,自引:0,他引:1  
张美玲  张慧 《气象科技》2007,35(4):495-499
利用滕州市1956~2005年降水量、平均气温资料,用Holdridge干燥度指数来分析近50年气候干湿变化趋势和特征。滕州市近50年来在年生物温度、年可能蒸散量极显著上升背景下,年降水量不显著的减小趋势,造成年水分盈亏量显著亏损及年干燥度指数显著增大,总体呈现暖干化趋势。年干燥度指数变化有明显的阶段性,干湿期交替变化,大体经历了3个湿期和2个干期。1976年年干燥度指数发生由偏湿向偏干的突变,突变后气候类型分布发生显著变化。通过对近50年年干燥度指数滑动平均值和标准差分析发现:随着干燥度指数平均值的增大,异常湿事件明显减少,而异常干事件明显增多,同时,随着标准差的增大,异常干湿事件频率明显增大。  相似文献   
68.
Water use efficiency (WUE) is an important variable to explore coupled relationships in carbon and water cycles. In this study, we first compared the spatial variations of annual gross primary productivity (GPP) and evapotranspiration (ET) using four GPP and ET products. Second, we selected the products closest to the flux towers data to estimate WUE. Finally, we quantitatively analyzed the impact of climate change and soil water content on WUE. The results showed that: (1) Four GPP and ET products provided good performance, with GOSIF-GPP and FLDAS-ET exhibiting a higher correlation and the smallest errors with the flux tower data. (2) The spatial pattern of WUE is consistent with that of GPP and ET, gradually decreasing from the northeast to the southwest. Higher WUE values appeared in the northeast forest ecosystem, and lower WUE values occurred in the western Gobi Desert, with a value of 0.28 gC m?2 mm?1. The GPP and ET products showed an increasing trend, while WUE showed a decreasing trend (55.15%) from 2001 to 2020. (3) The spatial relationship between WUE and driving factors reveal the variations in WUE of Inner Mongolia are mainly affected by soil moisture between 0 and 10 cm (SM0-10cm), vapor pressure deficit (VPD), and precipitation, respectively. (4) In arid regions, VPD and precipitation exhibit a major influence on WUE. An increase in VPD and precipitation has a negative and positive effect on WUE, with threshold values of approximately 0.36 kPa and 426 mm, respectively. (5) In humid regions, SM0-10cm, VPD, SM10-40cm, and SM40-100cm exert a significant impact on WUE, especially SM0-10cm, and weakens with increasing soil depths, these differences may be related to physiological structure and living characteristics of vegetation types in different climate regimes. Our results emphasize the importance of VPD and soil moisture in regional variability in WUE.  相似文献   
69.
Abstract:Hydrological regimes influence ecological patterns and processes as well as alter rates of wetland evapotranspiration.This study aimed to investigate the impact of groundwater fluctuation on evapotranspiration of Phragmites australis.Supported by field data obtained from the Baiyangdian Lake in northern China,the variations in groundwater levels were explored,and the changes in soil water and evapotranspiration of reed were analyzed to investigate different groundwater level scenarios using HYDRUS-1D model.The results showed that soil water content,recharged by groundwater,remained stable in the lower soil layer but varied strongly in the upper layer of the soil profile;in comparison to evaporation,Phragmites australis transpiration contributed significantly more to the overall evapotranspiration rate;the high levels of evapotranspiration could be maintained when groundwater levels vary between 1.0 m and 1.8 m,while it was reduced with an increase in groundwater levels as a result of water stress conditions.The results also indicated that the evapotranspiration of Phragmites australis could maintain higher evapotranspiration rates under natural water levels.The evapotranspiration,in other words,might be the main water consumer,but it nevertheless has little effect on water levels during water shortages.The evapotranspiration of Phragmites australis responded to the changes in groundwater levels could help researchers understand water requirements of the wetlands and establish suitable water levels for the wetlands.  相似文献   
70.
This study investigates the influence of interannual vegetation variability. Two sets of offline and online simulations were performed using the Community Earth System Model. The interannual Global LAnd Surface Satellite (GLASS) leaf area index (LAI) dataset from 1985 to 2000 and its associated climatological LAI were used to replace the default climatological LAI data in version 4 of the Community Land Model (CLM4). The re- sults showed that on a global scale, canopy transpiration and evaporation, as well as total evapotranspiration in offline simulations were significantly positively corre- lated with LAI, whereas ground evaporation and ground temperature showed significant negative correlation with LAI. However, the correlations in online simulations were reduced markedly because of interactive feedbacks between albedo, changed climatic factors and atmospheric variability. In the offline simulations, the fluctuations of differences in interannual variability of evapotranspiration and ground temperature focused on vegetation growing regions and the magnitudes were smaller. Those in online simulations spread over more regions and the magnitudes were larger. These results highlight the influence of interannual vegetation variability, particularly in online simulations, an effect that deserves consideration and attention when investigating the uncertainty of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号