首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   65篇
  国内免费   57篇
测绘学   44篇
大气科学   76篇
地球物理   123篇
地质学   171篇
海洋学   2篇
天文学   2篇
综合类   29篇
自然地理   432篇
  2023年   6篇
  2022年   25篇
  2021年   36篇
  2020年   43篇
  2019年   56篇
  2018年   34篇
  2017年   28篇
  2016年   27篇
  2015年   38篇
  2014年   42篇
  2013年   48篇
  2012年   53篇
  2011年   45篇
  2010年   37篇
  2009年   41篇
  2008年   26篇
  2007年   43篇
  2006年   39篇
  2005年   33篇
  2004年   34篇
  2003年   36篇
  2002年   29篇
  2001年   17篇
  2000年   8篇
  1999年   7篇
  1998年   10篇
  1997年   12篇
  1996年   9篇
  1995年   1篇
  1994年   6篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
  1986年   1篇
  1985年   2篇
排序方式: 共有879条查询结果,搜索用时 15 毫秒
21.
The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106kn2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation. An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux of alpine meadow from July to October,2003. The continuous carbon flux data were used to analyze the relationship between net ecosystem carbon dioxide exchange (NEE) and photosynthetically active radiation (PAR), as well as the seasonal patterns of apparent quantum yield (α) and maximum ecosystem assimilation (Pmax).Results showed that the daytime NEE fitted fairly well with the PAR in a rectangular hyperbola function, with α declining in the order of peak growth period (0.0244 μmolCO2 · μmol-1pAR) >early growth period > seed maturing period > withering period (0.0098 μmolCO2 · μmol-1pAR).The Pmax did not change greatly during the first three periods, with an average of 0.433mgCO2· m-2· s-1, i.e. 9.829 μmolCO2· m-2· s-1. However, during the withering period, Pmax was only 0.35 mgCO2 · m-2 · s-1, i.e. 7.945 μmolCO2 · m-2 · s-1. Compared with other grassland ecosystems, the α of the Tibetan Plateau alpine meadow ecosystem was much lower.  相似文献   
22.
The Tibetan Plateau, the Roof of the World, is the highest plateau with a mean elevation of 4000 m. It is characterized by high levels of solar radiation, low air temperature and low air pressure compared to other regions around the world. The alpine grassland, a typical ecosystem in the Tibetan Plateau, is distributed across regions over the elevation of 4500 m. Few studies for carbon flux in alpine grassland on the Tibetan Plateau were conducted due to rigorous natural conditions. A study of soil respiration under alpine grassland ecosystem on the Tibetan Plateau from October 1999 to October 2001 was conducted at Pangkog County, Tibetan Plateau (31.23°N, 90.01°E, elevation 4800 m). The measurements were taken using a static closed chamber technique, usually every two weeks during the summer and at other times at monthly intervals. The obvious diurnal variation of CO2 emissions from soil with higher emission during daytime and lower emission during nighttime was discovered. Diurnal CO2 flux fluctuated from minimum at 05:00 to maximum at 14:00 in local time. Seasonal CO2 fluxes increased in summer and decreased in winter, representing a great variation of seasonal soil respiration. The mean soil CO2 fluxes in the alpine grassland ecosystem were 21.39 mgCO2 · m-2 · h-1, with an average annual amount of soil respiration of 187.46 gCO2 · m-2 · a-1. Net ecosystem productivity is also estimated, which indicated that the alpine grassland ecosystem is a carbon sink.  相似文献   
23.
Midwestern states have invested extensively in grasslands for wildlife conservation, yet these public lands make up a minority of grassland habitat. How effective are public grasslands, relative to private lands, for conserving native songbird populations? I compare private and public lands in southern Minnesota using bird survey data from Conservation Reserve Program (CRP) fields and public lands and assessing fragmentation in a GIS. Bird abundance and diversity were greater on CRP lands. Vegetation composition, field isolation, and field size appear to explain differences in bird counts. Land cover data show that grassland habitat on public lands is scarce and widely scattered. The CRP provides more, and here better, habitat for grassland birds. Funding partly explains this disparity. Trends in farm set‐aside program rules and distribution, which can be vary greatly over time, will strongly influence the success or failure of biodiversity conservation in this region.  相似文献   
24.
Yong Zha  Jay Gao  Ying Zhang 《Area》2005,37(3):332-340
Situated in a climatically stressful environment, alpine grassland is sensitive to subtle climate changes in its productivity. We remedy the current deficiency in studying grassland productivity by taking the integrated effect of all relevant factors into consideration. The relative importance of temperature, rainfall and evaporation to the alpine grassland productivity in western China was determined through analysis of their relationship with the normalized difference vegetation index (NDVI) between 1981 and 2000. Climate warming stimulated grassland productivity in the 1980s, but hampered it in the 1990s. Temperature is more important than rainfall to grassland productivity early in the growing season. However, their relative importance is reversed late in the growing season. Monthly summer month rainfall modified by maximum monthly temperature is a good predictor of alpine grassland productivity at 62.0 per cent. However, the best predictor is water deficiency, which is able to improve the estimation accuracy to 78.3 per cent. Hence, the impact of temperature on grassland productivity is better studied indirectly through evaporation.  相似文献   
25.
北方农牧交错带退耕还林还草经济政策优化调控   总被引:4,自引:0,他引:4  
退耕还林还草作为北方农牧交错带生态重建的切入点,在实际操作中也不可避免地存在一定的问题。文章对当前退耕还林还草的社会经济特征、政策安排、协调机制及制约因素进行了分析。提出:区域粮食适度自给定位、部门协调机制创新、产权制度改革、区域产业专业化分工、适度生态移民及建立生态补偿机制为进行政策优化调控的主要途径。  相似文献   
26.
Biodiversity loss, climate change, and increased freshwater consumption are some of the main environmental problems on Earth. Mountain ecosystems can reduce these threats by providing several positive influences, such as the maintenance of biodiversity, water regulation, and carbon storage, amongst others. The knowledge of the history of these environments and their response to climate change is very important for management, conservation, and environmental monitoring programs. The genesis of the soil organic matter of the current upper montane vegetation remains unclear and seems to be quite variable depending on location. Some upper montane sites in the very extensive coastal Sea Mountain Range present considerable organic matter from the late Pleistocene and other from only the Holocene. Our study was carried out on three soil profiles (two cores in grassland and one in forest) on the Caratuva Peak of the Serra do Ibitiraquire (a sub-range of Sea Mountain Range – Serra do Mar) in Southern Brazil. The δ13C isotopic analyses of organic matter in soil horizons were conducted to detect whether C3 or C4 plants dominated the past communities. Complementarily, we performed a pollen analysis and 14C dating of the humin fraction to obtain the age of the studied horizons. Except for a short and probably drier period (between 6000 and 4500 cal yr BP), C3 plants, including ombrophilous grasses and trees, have dominated the highlands of the Caratuva Peak (Pico Caratuva), as well as the other uppermost summits of the Serra do Ibitiraquire, since around 9000 cal yr BP. The Caratuva region represents a landscape of high altitude grasslands (campos de altitude altomontanos or campos altomontanos) and upper montane rain/cloud forests with soils that most likely contain some organic matter from the late Pleistocene, as has been reported in Southern and Southeastern Brazil for other sites. However, our results indicate that the studied deposits (near the summit) are from the early to late Holocene, when somewhat wetter and warmer conditions (since around 9000 cal yr BP) enabled a stronger colonization of the ridge of Pico Caratuva by mainly C3 plants, especially grassland species. However, at the same time, even near the summit, the soil core from the forest site already presented the current physiognomy (or a shrubby/elfin or successional forest), indicating that the colonization of the neighboring uppermost saddles and valleys were probably populated mainly by upper montane forest species.  相似文献   
27.
Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types (alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10-20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen (N), total potassium (K), and organic carbon (C) in 10-20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P (phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.  相似文献   
28.
To understand the effect of woody plant encroachment on hydrological processes of mesic grasslands, we quantified infiltration capacity in situ, the temporal changes in soil water storage, and streamflow of a grassland catchment and a catchment heavily encroached by juniper (Juniperus virginiana, eastern redcedar) in previously cultivated, non‐karst substrate grasslands in north‐central Oklahoma for 3 years. The initial and steady‐state infiltration rates under the juniper canopy were nearly triple to that of the grassland catchment and were intermediate in the intercanopy spaces within the encroached catchment. Soil water content and soil water storage on the encroached catchment were generally lower than on the grassland catchment, especially when preceding the seasons of peak rainfall in spring and fall. Frequency and magnitude of streamflow events were reduced in the encroached catchment. Annual runoff coefficients for the encroached catchment averaged 2.1%, in contrast to 10.6% for the grassland catchment. Annual streamflow duration ranged from 80 to 250 h for the encroached catchment compared with 600 to 800 h for the grassland catchment. Our results showed that the encroachment of juniper into previously cultivated mesic grasslands fundamentally alters catchment hydrological function. Rapid transformation of mesic grassland to a woodland state with juniper encroachment, if not confined, has the potential to drastically reduce soil water, streamflow and flow duration of ephemeral streams in the Southern Great Plains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
29.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
30.
Low temperature is an important limiting factor for alpine ecosystems on the Tibetan Plateau. This study is based on data from on-site experimental warming platforms (open top chambers, OTC) at three elevations (4300 m, 4500 m, 4700 m) on the Qinghai-Tibet Plateau. The carbon and nitrogen stoichiometry characteristics of plant communities, both above-ground and below-ground, were observed in three alpine meadow ecosystems in August and September of 2011 and August of 2012. Experimental warming significantly increased above-ground nitrogen content by 21.4% in September 2011 at 4500 m, and reduced above-ground carbon content by 3.9% in August 2012 at 4300 m. Experimental warming significantly increased below-ground carbon content by 5.5% in August 2011 at 4500 m, and the below-ground ratio of carbon to nitrogen by 28.0% in September 2011 at 4300 m, but reduced below-ground nitrogen content by 15.7% in September 2011 at 4700 m, below-ground carbon content by 34.3% in August 2012 at 4700 m, and the below-ground ratio of carbon to nitrogen by 37.9% in August 2012 at 4700 m. Experimental warming had no significant effect on the characteristics of community carbon and nitrogen stoichiometry under other conditions. Therefore, experimental warming had inconsistent effects on the carbon and nitrogen stoichiometry of plant communities at different elevations and during different months. Soil ammonium nitrogen and nitrate nitrogen content were the main factors affecting plant community carbon and nitrogen stoichiometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号