首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3267篇
  免费   644篇
  国内免费   1292篇
测绘学   203篇
大气科学   1645篇
地球物理   556篇
地质学   1348篇
海洋学   648篇
天文学   187篇
综合类   275篇
自然地理   341篇
  2024年   33篇
  2023年   68篇
  2022年   113篇
  2021年   175篇
  2020年   159篇
  2019年   195篇
  2018年   130篇
  2017年   169篇
  2016年   139篇
  2015年   195篇
  2014年   210篇
  2013年   246篇
  2012年   240篇
  2011年   224篇
  2010年   189篇
  2009年   218篇
  2008年   218篇
  2007年   210篇
  2006年   223篇
  2005年   214篇
  2004年   169篇
  2003年   161篇
  2002年   127篇
  2001年   156篇
  2000年   166篇
  1999年   127篇
  1998年   144篇
  1997年   99篇
  1996年   88篇
  1995年   81篇
  1994年   87篇
  1993年   42篇
  1992年   41篇
  1991年   39篇
  1990年   21篇
  1989年   12篇
  1988年   12篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   13篇
  1983年   7篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有5203条查询结果,搜索用时 46 毫秒
951.
海洋生态系统中的氮素生物地球化学循环主要是由微生物的代谢过程来驱动的,包括氮固定、氮同化、硝化以及反硝化和厌氧氨氧化过程,这些过程都伴随着不同程度的氮氧同位素的分馏,直接影响着海洋硝酸盐中的氮氧稳定同位素组成.因此,通过检测海洋硝酸盐中的氮氧稳定同位素信号,就可以捕捉到海洋中发生的具体氮素循环过程.细菌反硝化法是这一研究最有力的手段,通过细菌的作用把硝酸盐中记录的氮氧稳定同位素信号转化到N2O中,再通过痕量N2O的同位素质谱测定和分析,准确地反映海洋中发生的氮素转化过程.硝酸盐氮氧稳定同位素分馏过程为深入理解海洋氮循环提供了一个重要的工具,有力推动了海洋氮素生物地球化学的研究,在近10年来取得了重要进展.  相似文献   
952.
1961- 2005 年中国霾日气候特征及变化分析   总被引:37,自引:1,他引:36  
高歌 《地理学报》2008,63(7):761-768
利用1961-2005 年中国霾日统计资料, 对中国霾的时空气候分布特征、变化趋势进行了详细分析, 并探讨了霾变化的可能原因及其与太阳总辐射、日照时数变化的关系。结果表明: 近45 年来, 中国年和四季霾日的空间分布特征均呈现东多西少的空间分布态势, 东部地区集中在三个多发区, 分别为长江中下游、华北和华南; 季节变化, 除东北地区、青藏高原、西北西部四季霾日均很少且变化不明显外, 其余大部分地区均呈现为冬季多, 夏季少, 春秋 季居中的特点。近45 年, 全国平均年霾日数呈现明显的增加趋势, 2004 年为最高值。我国东部大部地区主要呈现增加趋势, 尤其霾多发地区, 如长江中下游、珠江流域及河南西部等 地, 霾日增加幅度大, 趋势显著, 人类活动造成的大气污染物增加及天气气候变化是这些地区霾日呈现增加趋势的可能原因, 我国西部地区和东北大部地区则以减少趋势为主。华北、长江中下游地区、华南地区霾日变化趋势与日照时数变化趋势相反, 霾的增加是造成太阳总 辐射减少的主要原因之一。东北地区、西北地区、西南地区、青藏高原霾日变化和日照时数变化均呈现不明显的减少趋势, 但由于这些地区霾日发生少, 其变化不会对日照时数和太阳总辐射变化造成很大的影响。  相似文献   
953.
新疆大气可降水量的气候特征及其变化   总被引:13,自引:2,他引:11  
史玉光  孙照渤 《中国沙漠》2008,28(3):519-525
利用1961—2000年NCEP/NCAR再分析逐日资料,分析了新疆地区不同季节大气可降水量(APW)的气候分布特征和变化趋势。结果表明:新疆夏季APW小于季风区界限25 mm,从该角度表明新疆为非季风区。APW空间分布呈塔里木盆地和准格尔盆地为高值区,海拔高的阿勒泰山、天山和昆仑山为低值区。APW夏季最大,但小于同纬度东部季风区,春、秋次之,冬季最少,春、秋和冬季APW与同纬度东部季风接近。APW的地理分布与实际降水量分布相反,其最大(最小)区域却为降水量最小(最大)区,受西风带影响,新疆APW模态主要表现全疆一致变化,分布稳定,与降水模态分布差异性大有显著不同,且近40 a来无显著变化趋势,表明决定新疆降水差异的根本原因不在于水汽的多少,而是由降水产生的动力条件、水汽辐合和其他因素差异决定的。  相似文献   
954.
沙漠地区春季近地层气象要素分布规律的观测研究   总被引:7,自引:2,他引:5  
程穆宁  牛生杰 《中国沙漠》2008,28(5):955-961
利用2005年1月至2006年4月朱日和地区20 m气象塔的风向、风速、气温、相对湿度的观测资料,分析沙漠地区春季近地层气象要素的分布规律。结果表明: 春季温度回升,风速最大,相对湿度最小,利于起沙,故沙尘天气频繁。风速满足幂指数率分布规律,并且幂指数m能够很好的反映出风速梯度的变化情况;在沙尘暴、扬沙、背景、浮尘的天气条件下,春季近地面层风速梯度依次增大,湍流动量、热量交换系数依次减小;风向以西南为主。浮尘、扬沙天气各气层平均增温率分别大于或小于同时段的背景大气;沙尘暴期间温度下降,平均降温率为0.61 ℃\5h-1。春季相对湿度的平均递减率(递增率)与平均增温率(降温率)的大小正相关。浮尘天气相对湿度的平均递减率大于同时段的背景大气;扬沙天气相对湿度的平均递减率小于同时段的背景大气;沙尘暴天气相对湿度增大,平均增大率为2.80%\5h-1。  相似文献   
955.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   
956.
The explosive rhyolitic eruption of Öræfajökull volcano, Iceland, in AD 1362 is described and interpreted based on the sequence of pyroclastic fall and flow deposits at 10 proximal locations around the south side of the volcano. Öræfajökull is an ice-clad stratovolcano in south central Iceland which has an ice-filled caldera (4–5 km diameter) of uncertain origin. The main phase of the eruption took place over a few days in June and proceeded in three main phases that produced widely dispersed fallout deposits and a pyroclastic flow deposit. An initial phase of phreatomagmatic eruptive activity produced a volumetrically minor, coarse ash fall deposit (unit A) with a bi-lobate dispersal. This was followed by a second phreatomagmatic, possibly phreatoplinian, phase that deposited more fine ash beds (unit B), dispersed to the SSE. Phases A and B were followed by an intense, climactic Plinian phase that lasted ∼ 8–12 h and produced unit C, a coarse-lapilli, pumice-clast-dominated fall deposit in the proximal region. At the end of Plinian activity, pyroclastic flows formed a poorly-sorted deposit, unit D, presently of very limited thickness and exposed distribution. Much of Eastern Iceland is covered with a very fine distal ash layer, dispersed to the NE. This was probably deposited from an umbrella cloud and is the distal representation of the Plinian fallout. A total bulk fall deposit volume of ∼ 2.3 km3 is calculated (∼ 1.2 km3 DRE). Pyroclastic flow deposit volumes have been crudely estimated to be < 0.1 km3. Maximum clast size data interpreted by 1-D models suggests an eruption column ∼ 30 km high and mass discharge rates of ∼ 108 kg s− 1. Ash fall may have taken place from heights around 15 km, above the local tropopause (∼ 10 km), with coarser clasts dispersed below that under a different wind regime. Analyses of glass inclusions and matrix glasses suggest that the syn-eruptive SO2 release was only ∼ 1 Mt. This result is supported by published Greenland ice-core acidity peak data that also suggest very minor sulphate deposition and thus SO2 release. The small sulphur release reflects the low sulphur solubility in the 1362 rhyolitic melt. The low tropopause over Iceland and the 30-km-high eruption column certainly led to stratospheric injection of gas and ash but little sulphate aerosol was generated. Moreover, pre-eruptive and degassed halogen concentrations (Cl, F) indicate that these volatiles were not efficiently released during the eruption. Besides the local pyroclastic flow (and related lahar) hazard, the impact of the Öræfajökull 1362 eruption was perhaps restricted to widespread ash fall across Eastern Iceland and parts of northern Europe.  相似文献   
957.
Oxygen stable isotope of atmospheric water vapor is widely used to study the modern process of climate. Atmospheric water vapor samples were collected at Dlingha, northeast of Tibetan Plateau during the period from July 2005 to February 2006. The variation of δ 18O and the relationships between δ 18O and both the temperature and specific humidity are analyzed in this paper. Results show that the seasonal variation of δ 18O of atmospheric water vapor at Delingha is remarkable with higher δ 18O in summer and lower δ 18O in winter. The temporal variation of vapor δ 18O shows obvious fluctuations, with magnitude of over 37‰ The daily variation of the δ 18O is highly correlated with air temperature. The relationship between δ 18O and atmospheric water vapor content is complex. Study shows that δ 18O of atmospheric water vapor is positively correlated with specific humidity in winter in seasonal scale and inversely correlated with specific humidity in summer rainy period. The δ 18O values of atmospheric water vapor are lower than those of precipitation at Delingha, and the average difference is 10.7‰ Variations of δ 18O of atmospheric water vapor is also found to be affected by precipitation events, The model results show that the precipitation effect could have caused the vapor δ 18O in the raining season to lower by 7% in average in July and August. Supported by the National Natural Science Foundation of China (Grant Nos. 40671043, 40571039 and 40771048) and National Basic Research Program of China (Grant No. 2005CB422002)  相似文献   
958.
为了探索水合物背景下沉积物中自生矿物响应,对采自综合大洋钻探计划(IODP)311航次沉积物中自生碳酸盐岩颗粒进行了矿物组成、形貌特征和碳、氧稳定同位素特征等研究。X光粉晶衍射(XRD)和扫描电镜(SEM)结果显示碳酸盐岩颗粒的主要矿物成分是铁白云石和方解石,呈多孔状结核和不规则状集合体产出。碳酸盐岩颗粒的碳稳定同位素δ13CPDB低至-41.50‰,证实其碳源源自甲烷,其成因与甲烷厌氧氧化过程有关,印证了研究区存在海底甲烷渗漏现象,是甲烷水合物赋存区重要的识别标志之一。碳酸盐岩颗粒的氧稳定同位素δ18OPDB总体上随着沉积物深度增加而减小,可能指示沉积物的背景温度由下而上(从早到晚)逐渐降低。研究结果提供了现代海洋天然气水合物背景下沉积物中自生碳酸盐岩的碳、氧稳定同位素记录,对于寻找我国海域天然气水合物资源,探索地史时期古海洋沉积物中类似的甲烷事件记录具有重要的理论和实践指导意义。  相似文献   
959.
辽宁朝阳小塔子沟-东五家子金矿田地球化学特征   总被引:1,自引:1,他引:0  
在朝阳小塔子沟-东五家子金矿田范围内,北地金矿、小塔子沟金矿和东五家子金矿,因距离岩体的远近不同,形成了不同的特征.石英流体包裹体研究表明,位于岩体内接触带的北地金矿为中温、中-深成热液矿床,位于岩体外接触带的小塔子沟金矿为中温、中成热液矿床,远离岩体的东五家子金矿为中-低温、浅成热液矿床.氢、氧同位素研究表明,北地金矿和小塔子沟金矿的成矿流体主要为岩浆水,东五家子金矿的成矿流体为岩浆水和大气降水混合成因.微量元素研究表明,北地金矿矿石以Mo、Bi等元素相对富集为特征,小塔子沟金矿矿石以Cu、Zn等元素相对富集为特征,东五家子金矿矿石以Pb、Ag等元素相对富集为特征.矿床离岩体越远,金矿物中Au/Ag比值越小.  相似文献   
960.
对栗木水溪庙矿区泥盆系上统融县组灰岩的碳氧同位素进行了研究,该地区灰岩的碳氧同位素组成可提供隐伏花岗岩隆起及其相关流体的重要信息。受隐伏花岗岩侵入驱动的流体与上覆融县组灰岩发生反应的温度在110℃左右,流体的初始同位素组成为δ18OSMOW=-3‰,δ13CPDB≤-7‰,反应的水岩比值(w/r)可能小于5。这种岩浆水与大气降水的混合流体与围岩之间的水岩反应使得地表灰岩的δ18O和δ13C值降低,产生负异常。研究表明,围岩的δ18O值降低受反应的水岩比值和温度控制;δ13C值降低主要与反应的水岩比值有关。反应的温度越高,w/r值越大,灰岩的碳氧同位素负异常越明显。因此,水溪庙矿区地表出露的碳酸盐地层中的碳氧同位素变化可在地球化学勘查中用于指示下伏花岗岩岩脊的隐伏位置。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号