首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3366篇
  免费   584篇
  国内免费   997篇
测绘学   270篇
大气科学   353篇
地球物理   895篇
地质学   2074篇
海洋学   664篇
天文学   60篇
综合类   325篇
自然地理   306篇
  2024年   6篇
  2023年   29篇
  2022年   100篇
  2021年   92篇
  2020年   125篇
  2019年   141篇
  2018年   122篇
  2017年   116篇
  2016年   134篇
  2015年   176篇
  2014年   221篇
  2013年   222篇
  2012年   216篇
  2011年   216篇
  2010年   201篇
  2009年   261篇
  2008年   202篇
  2007年   227篇
  2006年   271篇
  2005年   208篇
  2004年   159篇
  2003年   168篇
  2002年   165篇
  2001年   140篇
  2000年   134篇
  1999年   120篇
  1998年   109篇
  1997年   99篇
  1996年   112篇
  1995年   71篇
  1994年   75篇
  1993年   71篇
  1992年   54篇
  1991年   42篇
  1990年   31篇
  1989年   32篇
  1988年   17篇
  1987年   18篇
  1986年   13篇
  1985年   11篇
  1984年   8篇
  1983年   1篇
  1980年   1篇
  1979年   5篇
  1976年   2篇
  1954年   3篇
排序方式: 共有4947条查询结果,搜索用时 15 毫秒
71.
花敖包特大型脉状银铅锌多金属矿床赋存于下二叠统寿山沟组(P1s)裂隙破碎带中,属中低温次火山热液成因.矿床处于大兴安岭中南部的锡林浩特-霍林郭勒多金属成矿带上,断裂构造发育,火山活动强烈,银铅锌多金属多期成矿.矿体赋存于北西、北东及近南北向的构造破碎带里,矿体呈脉状严格受断裂构造控制.矿体规模中等,形态较复杂,厚度较稳定,组分较均匀.围岩蚀变发育,可出现3期,具明显的分带性.成矿期为晚侏罗世.  相似文献   
72.
酸性矿山废水(acid mine drainage,AMD)是一类pH低并含有大量有毒金属元素的废水。AMD及受其影响的环境中次生高铁矿物类型主要包括羟基硫酸高铁矿物(如黄铁矾和施威特曼石等)和一些含水氧化铁矿物(如针铁矿和水铁矿等),而且这些矿物在不同条件下会发生相转变,如施氏矿物向针铁矿或黄铁矾矿物相转化。基于酸性环境中生物成因次生矿物的形成会"自然钝化"或"清除"废水中铁和有毒金属这一现象所获得的启示,提出利用这些矿物作为环境吸附材料去除地下水中砷,不但吸附量大(如施氏矿物对As的吸附可高达120mg/g),而且可直接吸附As(III),还几乎不受地下水中其他元素影响。利用AMD环境中羟基硫酸高铁矿物形成的原理,可将其应用于AMD石灰中和主动处理系统中,构成"强化微生物氧化诱导成矿-石灰中和"的联合主动处理系统,以提高AMD处理效果和降低石灰用量。利用微生物强化氧化与次生矿物晶体不断生长的原理构筑生物渗透性反应墙(PRB)并和石灰石渗透沟渠耦联,形成新型的AMD联合被动处理系统,这将有助于大幅度增加处理系统的寿命和处理效率。此外,文中还探讨了上述生物成因矿物形成在AMD和地下水处理方面应用的优点以及今后需要继续研究的问题。  相似文献   
73.
In this paper, an inverse mapping is used to transform the previously-derived analytical solutions from a local elliptical coordinate system into a conventional Cartesian coordinate system. This enables a complete set of exact analytical solutions to be derived rigorously for the pore-fluid velocity, stream function, and excess pore-fluid pressure around and within buried inclined elliptic inclusions in pore-fluid-saturated porous rocks. To maximize the application range of the derived analytical solutions, the focal distance of an ellipse is used to represent the size of the ellipse, while the length ratio of the long axis to the short one is used to represent the geometrical shape of the ellipse. Since the present analytical solutions are expressed in a conventional Cartesian coordinate system, it is convenient to investigate, both qualitatively and quantitatively, the distribution patterns of the pore-fluid flow and excess pressure around and within many different families of buried inclined elliptic inclusions. The major advantage in using the present analytical solution is that they can be conveniently computed in a global Cartesian coordinate system, which is widely used in many scientific and engineering computations. As an application example, the present analytical solutions have been used to investigate how the dip angle of an inclined elliptic inclusion affects the distribution patterns of the pore-fluid flow and excess pore-fluid pressure when the permeability ratio of the elliptic inclusion is of finite but nonzero values.  相似文献   
74.
The kinetics of the aqueous phase reactions of NO3 radicals with HCOOH/HCOO and CH3COOH/CH3COO have been investigated using a laser photolysis/long-path laser absorption technique. NO3 was produced via excimer laser photolysis of peroxodisulfate anions (S2O 8 2– ) at 351 nm followed by the reactions of sulfate radicals (SO 4 ) with excess nitrate. The time-resolved detection of NO3 was achieved by long-path laser absorption at 632.8 nm. For the reactions of NO3 with formic acid (1) and formate (2) rate coefficients ofk 1=(3.3±1.0)×105 l mol–1 s–1 andk 2=(5.0±0.4)×107 l mol–1 s–1 were found atT=298 K andI=0.19 mol/l. The following Arrhenius expressions were derived:k 1(T)=(3.4±0.3)×1010 exp[–(3400±600)/T] l mol–1 s–1 andk 2(T)=(8.2±0.8)×1010 exp[–(2200±700)/T] l mol–1 s–1. The rate coefficients for the reactions of NO3 with acetic acid (3) and acetate (4) atT=298 K andI=0.19 mol/l were determined as:k 3=(1.3±0.3)×104 l mol–1 s–1 andk 4=(2.3±0.4)×106 l mol–1 s–1. The temperature dependences for these reactions are described by:k 3(T)=(4.9±0.5)×109 exp[–(3800±700)/T] l mol–1 s–1 andk 4(T)=(1.0±0.2)×1012 exp[–(3800±1200)/T] l mol–1 s–1. The differences in reactivity of the anions HCOO and CH3COO compared to their corresponding acids HCOOH and CH3COOH are explained by the higher reactivity of NO3 in charge transfer processes compared to H atom abstraction. From a comparison of NO3 reactions with various droplets constituents it is concluded that the reaction of NO3 with HCOO may present a dominant loss reaction of NO3 in atmospheric droplets.  相似文献   
75.
Relatively large quantities (1 mg) of formic acid have been collected from the atmosphere and subjected to carbon-isotopic analysis, as a means of source discrimination. Ambient formic acid was captured on Ca(OH)2-treated filters using a high-volume sampler. The collection method was not only efficient (>96%), but also appears to have low artifact production.Most of the samples (36 out of 52) were collected over a two-year period at the summit of Mount Lemmon, Arizona, where a strong seasonality in HCOOH mixing ratio was observed (0.2 ppb during winter months to 1.5 ppb in the summer). Other collection sites included the Oregon coast, Colorado Rockies, urban Tucson, and the North Dakota prairie. The carbon-13 content of atmospheric HCOOH was found to be have little variation (–18 to –25), regardless of location or season. This is consistent with a single dominant source of formic acid. The carbon-14 measurements of 6 Mount Lemmon samples showed high levels of modern carbon (93–113% modern).The emissions from formicine ants and automobile combustion were selected as two other potential sources for isotopic analysis. The HCOOH collected from auto exhaust was much more depleted in13C than the atmospheric samples, with a 13C of –28.0 and –48.6 from a leaded and unleaded automobile, respectively. Formicine ants, on the other hand, ranged from –17.2 to –20.6.  相似文献   
76.
The kinetics of conversion of iron(III) (hydr)oxides to ferrous iron mediated by fulvic acid have been investigated in order to improve the understanding of the redox cycling of iron at the oxic-anoxic boundary in natural waters. Under the conditions similar to natural waters, fulvic acid is able to reduce the iron(III) (hydr)oxide. The kinetics of the reaction depend on the reactivity of iron(III) (hydr)oxides and the reducing power of the fulvic acid. The rate of reaction is 60 nm/h obtained under following conditions: total concentration of Fe(III) 1.0 × 10–4 M, pH 7.5, fulvic acid 5 mg/L. The rate is considered as a net result of reduction and oxidation in the > FeIII-OH/Fe(II) wheel coupled with fulvic acid. In a real natural water system, reductants other than fulvic acid may be of importance. The results obtained in the laboratory, however, provide evidence that the Fe(OH)3(s)/Fe(II) redox couple is able to act as an electron-transfer mediator for the oxidation of natural organic substances, such as fulvic acid by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   
77.
渗流域内应用拉普拉斯变换(LT)建立相应的有限分析(FAM)方程,顾及渗流域内地下水流的初始条件和边界条件,可在LT空间构成一个封闭的以水头像函数为变量的线性方程组。将此方程组所得的解,通过Stehfest数值反演公式,可归化为时间域的解(水头)。由于时间t被隐含在数值方程内,从而克服了传统数值法按时段(△t)逐步迭代的缺陷,提高了计算效率,也为用嵌入法建立地下水流管理模型提供了一条捷径。  相似文献   
78.
The leaching of coal and coal/asphaltite/wood-ashes in sulfuric acid (pH 1.0, 25 °C, S/L, 1:10) was studied as a function of time; acid consumption and extracted metal concentrations are presented. Whole coals consumed acid rapidly during the first few minutes, followed by slow acid consumption. Wood-, lignite-, and asphaltite-ashes consumed acid in two stages, the rapid phase extending < 30 min and the slow phase extended up to 10 days. The rapid phase was dominated by the dissolution of Ca, K and Mg ions for wood-ash, by Ca, Al and Mg ions for lignite-ash and Ca and Mg ions for asphaltite-ash. The sulfur concentration in solution and the concentrations of Ca, Fe, K, Mg, Na, P, Al and Mn in the aqueous phase verified the neutralizing capacity of the untreated ashes as well as the formation of insoluble sulfates in the residues. The slow phase kinetics differed for different fuels and exhibited leaching of several abundant elements—Fe, Al, K, Na and Mn. Trace elements (Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Th, U, V, Zn) sometimes required up to 32 h for maximal extraction from ashes. Suggestions are presented regarding the chemical nature of trace elements in the untreated coals and ashes and suitable residence times for economical industrial processes. We think it possible to combine bacteriological oxidation of sulfidic concentrates of acid leaching from ash of various qualities or even whole coals.  相似文献   
79.
Effect of some additives on synthesis of zeolite from coal fly ash   总被引:3,自引:0,他引:3  
Hydrothermal conversion of fly ash into zeolites was conducted and the effects of the addition of sodium halide and waste solutions produced after zeolitization of fly ash, as well as the adjustment of the Si/Al ratio prior to synthesis process on the formation and cation exchange capacity (CEC) of zeolite product were evaluated. Both the addition of NaCl and NaF ameliorated the crystallinity and CEC of synthesized zeolite, but NaF had a better improvement effect. Na+ was considered to enhance the crystallization of zeolite, while F favored the dissolution of fly ash. The type of zeolite formed depended on the Si/Al ratio of the starting material prior to the nucleation and crystallization of zeolite. The adjustment of the Si/Al ratio of fly ash by addition of Na2SiO4 and Al(OH)3 changed the type and CEC of zeolite. Waste solutions contained large amount of Si and little Al due to the formation of a zeolite named NaP1 in zeolite terminology with the Joint Committee of Powder Diffraction Standard (JCPDS) code of 39-0219. The alkalinity decreased largely. As a result, the CEC value of zeolite products synthesized with waste solution as alkali source decreased. The supplementation of new alkali to adjust the alkalinity of waste solution could enhance the CEC of synthesized product. It was concluded that: (1) addition of sodium halide and adjustment of the Si/Al ratio prior to synthesis can improve the quality of zeolite; (2) waste solutions produced following the zeolitization of fly ash can be reused as an alkali source in the activation of fly ash; zero-emission of waste solution in the synthesis of zeolite from fly ash is possible.  相似文献   
80.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号