首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   37篇
  国内免费   26篇
地球物理   2篇
地质学   137篇
海洋学   6篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   5篇
  2014年   13篇
  2013年   3篇
  2012年   8篇
  2011年   14篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   7篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有148条查询结果,搜索用时 171 毫秒
121.
二连盆地下白垩统发育一套陆源碎屑成分和碳酸盐矿物组成的混合沉积,且近年来在其中发现大量油气显示,但目前对这套混合沉积的研究程度较低。通过岩心观察、薄片鉴定、测井等方法,对巴音都兰、阿南和额仁淖尔等多个重点凹陷内云质岩的岩石学特征、分布特征等进行研究,认为:云质岩分布主要受母源区岩性控制,为典型的母源混合类型;湖盆演化类型不同导致沉积相发育的差异性,进而决定云质岩纵向分布;火山玻璃脱玻化为埋藏白云化作用提供大量Mg2 +、Fe2 +离子,导致白云石中铁含量高;古气候对云质岩分布的影响较弱。  相似文献   
122.
塔里木盆地东北部库鲁克塔格中上奥陶统却尔却克群中的深水碳酸盐岩及其白云岩化是较为特殊的沉积与成岩作用类型之一。通过对南雅尔当山剖面详细观察与采样分析,阐明了其沉积学、岩石学及地球化学特征:深水碳酸盐岩的顶、底均与浊积岩伴生,呈重力滑覆-带状分布,主要由黄灰色-灰色、大多呈薄层瘤状的白云岩夹泥页岩构成;可见到海绵骨针、三叶虫等浮游生物化石以及分选差的花岗岩、火山岩及硅质岩等碎屑;基本保留了原始沉积中的溶解、水平层理等较深水沉积的特征。该套白云岩包括泥粉晶白云岩、细晶白云岩或残余陆屑白云岩、巨型藻鲕白云岩和生屑泥粉晶白云岩等9类白云岩;白云石有序度为0.47~0.56和0.70~0.76,中强阴极发光,经历了2期较强的白云岩化作用;富含SiO2、Al2O3、Mg、Mn、Fe、MnO和TiO234SV-CDT为-0.2~6.6,ΣREE含量为46.7×10-6~67.4×10-6,呈正铕负铈的“帽式”稀土配分模式,反映相对还原沉积环境;反映沉积水体盐度的Na2O+K2O、Sr、Ba含量偏低, 87Sr/86Sr 值相对偏高,δ18OPDB 、δ13CPDB稍低,不能指示原始海水或原始环境。综合上述分析结果认为:这套深水碳酸盐岩形成于向上变浅的缓坡带,其发生了浅埋藏、中-深埋藏条件下的2期白云岩化,且受构造推覆或重力滑覆至外陆棚,并发生裂隙-溶蚀作用和白云石、方解石及烃类的充填作用。  相似文献   
123.
Dolomites occur extensively in Cambrian to Lower Ordovician carbonates in the Tienshan orogen of the Quruqtagh area, north‐east Tarim Basin, where thick (up to 1 km), dark grey lenticular limestones of semi‐pelagic to pelagic origin are prominent. The dolomites generally occur as beige, anastomosed geobodies that cross‐cut well‐stratified limestones. Based on detailed field investigations and petrographic examination, three types of matrix dolomite are identified: fine crystalline planar‐e (Md1), fine to medium crystalline planar‐s (e) (Md2) and fine to coarse crystalline non‐planar‐a (Md3) dolomites. One type of cement dolomite, the non‐planar saddle dolomite (Cd), is also common. The preferential occurrence of Md1 along low‐amplitude stylolites points to a causal link to pressure dissolution by which minor Mg ions were probably released for replacive dolomitization during shallow burial compaction. Type Md2, Md3 and Cd dolomites, commonly co‐occurring within the fractured zones, have large overlaps in isotopic composition with that of host limestone, implying that dolomitizing fluids inherited their composition from remnant pore fluids or were buffered by the formation water of host limestones through water–rock interaction. However, the lower δ18O and higher 87Sr/86Sr ratios of these dolomites also suggest more intense fluid–rock interaction at elevated temperature and inputs of Mg and radiogenic Sr from the host limestones with more argillaceous matter and possibly underlying Neoproterozoic siliciclastic strata. Secondary tensional faults and fractures within a compressional tectonic regime were probably important conduits through which higher‐temperature Mg‐rich fluids that had been expelled from depth were driven by enhanced tectonic compression and heating during block overthrusting, forming irregular networks of dolomitized bodies enclosed within the host limestones. This scenario probably took place during the Late Hercynian orogeny, as the Tarim block collided with Tienshan island arc system to the north and north‐east. Subsequent downward recharges of meteoric fluids into the dolomitizing aquifer probably terminated dolomitization as a result of final closure of the South Tienshan Ocean (or Palaeo‐Asian Ocean) and significant tectonic uplift of the Tienshan orogen. This study demonstrates the constructive role of notably tensional (or transtensional) faulting/fracturing in channelling fluids upward as a result of intense tectonic compression and heating along overthrust planes on the convergent plate margin; however, a relatively short‐lived, low fluid flux may have limited the dolomitization exclusively within the fractured/faulted limestones in the overthrust sheets.  相似文献   
124.
埋藏白云石化作用是形成厚层块状白云岩的主要机制之一,但其形成过程一直存在争议。本文以塔里木盆地永安坝剖面蓬莱坝组为例进行解剖,在露头和薄片岩石学研究的基础上,利用激光U-Pb定年和同位素分析,剖析了蓬莱坝组白云岩形成时期及演化过程,取得三个方面的认识:(1)蓬莱坝组发育四种类型白云岩:藻纹层白云岩、自形-半自形细中晶白云岩、雾心亮边自形中晶白云岩和他形粗晶白云岩,不同类型白云岩垂向互层发育;(2)U-Pb定年结果显示蓬莱坝组受三期云化作用改造,分别为准同生期云化作用、晚奥陶世到志留纪浅埋藏云化作用(464±12Ma到433±22Ma)及泥盆纪埋藏云化作用(382±29Ma),浅埋藏云化作用会对准同生白云石造成重结晶,而埋藏云化作用表现为白云石次生加大,存在寒武系云化流体卷入,影响U-Pb定年;(3)规模白云岩的发育为沉积环境和构造埋藏演化史共同作用的结果,提出塔中北斜坡和塔北南缘为规模白云岩发育区,这对本区油气勘探具有重要的指导意义。  相似文献   
125.
This study investigates the geometries of fault-controlled dolostone geobodies and their structural and sequence stratigraphic controls, which provide new insights for the prediction and production of fault-controlled dolomitized hydrocarbon reservoirs. A very thick succession (>1600 m) of Aptian–Albian shallow-marine carbonates of the Benassal Formation that crop out in the Benicàssim area (Maestrat Basin, eastern Spain) is partly replaced by dolomite, resulting in dolostone geometries ranging from massive patches to stratabound bodies. Detailed mapping, systematic logging and correlation were carried out to characterize the structural, sedimentary and sequence stratigraphic framework of the area and to constrain the principal controls on the full-range of dolostone geometries. The results show that carbonate sediments accumulated in a half graben stacked in three transgressive–regressive sequences. Large-scale massive dolostone patches (with up to kilometre extension) formed near large-scale faults indicating that they acted as entry points for warm dolomitizing fluids into the basin. These dolostone patches laterally pass to large stratabound bodies that extend for long distances (at least 7 km) away from feeding faults, forming a continuum. The presence of a regional unconformity and a clastic fine-grain low-permeability unit (Escucha Formation) on top of the Benassal Formation likely constrained the dolomitization fluids to an up to 580 m thick interval below the base of the Escucha Formation. Thus, only limestones within this interval, corresponding to the two uppermost transgressive–regressive sequences, were dolomitized. There is a clear relationship between the stratigraphic framework and the preferred replaced beds. Dolomitization preferentially affected sediments deposited in inner to middle ramp settings with predominant wackestone to packstone textures. Such facies are laterally most abundant in the east of the study area (i.e. basinward) and vertically in layers around the maximum flooding zone of the top sequence, which is preferentially affected by dolomitization.  相似文献   
126.
Upper Cambrian-Lower Ordovician shoal-facies carbonate rocks are well developed in the Yangjiap-ing section, Shimen, Hunan, and their types are also highly varied. There are both monomictic shoal-facies rocks (e.g. sparite oolitic limestone and sparite calcarenite) and polymictic shoal-facies rocks (e.g. grainstone, whose grain types include sand- and pebble-sized fragments, bioclasts, oolites, algal mats etc.). What is different is that the Upper Cambrian shoal-facies rocks have been mostly strongly dolomitized into shoal-facies dolomite with various residual textures. This paper presents an in-depth study of various kinds of diagenesis and pore space evolution occurring in this section and suggests that the diagenetic sequences of shoal-facies rocks in the study area is dominantly of retrogressive type.  相似文献   
127.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   
128.
陈梅  王龙樟  张雄  陈志斌 《沉积学报》2011,29(2):217-225
通过对川东北鸡唱地区碳酸盐岩的C、O同位素分析,结合岩石薄片镜下研究和阴极发光分析及前人的研究成果,探讨飞仙关组三级海平面变化趋势和白云岩化作用机理.为了便于分析,将样品分为泥晶灰岩和白云岩两组.泥晶灰岩的C、O同位素分析结果表明:δ13C全为正值,明显分为两段,先快速上升、然后低辐振荡下降,指示海平面在飞一段初期快速...  相似文献   
129.
余宽宏  金振奎  周勇  李鹏  李娜  官全胜 《沉积学报》2011,29(6):1041-1047
塔东地区寒武纪盆地相以及斜坡相发育泥晶白云岩及泥质泥晶白云岩,具有深水环境标志。通过样品岩石学特征研究、碳、氧同位素分析、有序度分析、锶同位素比值分析以及阴极发光特征分析,提出了塔东地区海盆局限期海水咸化深水准同生白云化机理。海盆局限阶段水体盐度变高,使得斜坡以及海底松软碳酸盐沉积物发生白云石化形成深水环境的泥粉晶白云...  相似文献   
130.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号