首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
大气科学   3篇
地质学   17篇
海洋学   1篇
自然地理   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1978年   1篇
排序方式: 共有22条查询结果,搜索用时 19 毫秒
1.
2.
Spinel-facies mantle xenoliths occur in a diatreme cutting throughthe Neogene Southern Patagonia Plateau at Gobernador Gregores(Santa Cruz Province, Argentina). This plateau is in a back-arcposition with respect to the Chile trench. Xenoliths differin their whole-rock composition from other South America occurrences,having higher CaO/Al2O3 ratios and, in some samples, TiO2 enrichment,whereas the Na2O/Al2O3 variation range is similar. Three assemblagescan be distinguished. Assemblage 1, in anhydrous protogranularlherzolites and harzburgites, contains clinopyroxene with adepleted major and trace element composition, indicating pre-metasomaticdepletion processes. This assemblage fully recrystallized toAssemblage 2 (amphibole ± phlogopite ± Cl-apatite-bearing)during a metasomatic episode. This causes clinopyroxene to acquiregeochemical characteristics often attributed to carbonate-meltmetasomatism. Noticeably, amphibole is markedly enriched inNb (up to 298 ppm), especially when depleted in Ti. A furtherevent, related to decompression during xenolith uplift to thesurface, induces closed-system (perhaps with the exception ofCO2 addition) disequilibrium melting of Assemblage 2, dominantlyof amphibole. It is found in pockets (where amphibole is a residualphase) consisting of Na–Si-rich glass and carbonate (Mg-richcalcite) drops, and in veins originating from the pockets (Assemblage3). Euhedral olivine, clinopyroxene and spinel crystallize onlyin the silicate glass. So do new, euhedral apatite crystalswhen glass is in contact with previous Assemblage 2 apatite.Textural evidence and comparison with experimental work suggestthat silicate glass and carbonates are the result of unmixingof a former homogeneous melt. Because of the different flowrates of carbonate and silicate melt, the xenoliths become enrichedin carbonate, which is found in the veins during their migration.Thus, the high CaO/Al2O3 ratio of whole rocks provides inconclusiveevidence of carbonatite metasomatism. This factor, and otherminor deviations from the expected results of carbonatite metasomatism,lead us to hypothesize an aqueous, Cl-rich fluid, possibly slabderived, as an alternative agent. Amphibole, resulting fromreactive porous flow of this agent in the mantle, could fullyexplain the observed geochemical features, as indicated by estimatesof its partition coefficients. KEY WORDS: carbonated xenoliths; Gobernador Gregores; LAM–ICP-MS; mantle metasomatism; silicate glass  相似文献   
3.
Lacustrine deposits are well represented in the lower part of the Late Carboniferous Agua Colorada Formation in the north-west Sierra de Narváez, Catamarca Province, Argentina. Lake Narváez was one of the several water bodies formed in the region immediately after the Gondwana glaciation. The lacustrine transport system has been divided into three distinct zones: delta, shallow lake and deep lake. Delta progradation proceeded from the ESE. Coarse-grained delta plain and turbidite delta front deposits suggest that the delta was formed close to the headwaters (‘short-headed stream delta’type). During periods of high discharge, river mouths acted as bypass zones and fine and very fine sands were transported further into the lake by underflow currents. The clastic material supplied by the deltaic system was partially reworked by wave action. Sands accumulated in unstable conditions at the upper delta front as a consequence of delta progradation. As a result of the addition of clastics in the steep delta front, turbidity currents were formed, spreading their load along the lower delta slope. Deep lacustrine deposits are typically stacked, forming two different kinds of progradational turbidite lobe sequences. Type I lobes were formed in a basinal setting and were probably detached from their feeder systems as a result of sediment-bypassing in a shallow lake during periods of low lake level. These turbidite lobes are replaced upwards by type II lobes, which were formed on the delta slope during periods of lake level rise that allowed the onset of delta progradation. The presence of highly deformed sandstone bodies suggests rapid depositional rates in a high slope setting, whereas the occurrence of hummocky cross-stratified sandstones indicates wave reworking of the sands initially emplaced by turbidity currents. Therefore, the inner part of type II lobes was formed above storm wave base. The depositional history of Lake Narváez can be traced through four evolutionary stages: lake transgression, formation of type I lobes, formation of type II lobes and delta progradation. Tectonic activity was probably important at the early stage of lake evolution, but the subsequent depositional history was mainly controlled by fluctuations of lake level.  相似文献   
4.
The performance of the maximum likelihood ensemble filter (MLEF), is investigated in the context of generic systems featuring the essential ingredients of unstable dynamics and on a spatially extended system displaying chaos. The main objective is to clarify the response of the filter to different regimes of motion and highlighting features which may help its optimization in more realistic applications. It is found that, in view of the minimization procedure involved in the filter analysis update, the algorithm provides accurate estimates even in the presence of prominent non-linearities. Most importantly, the filter ensemble size can be designed in connection to the properties of the system attractor (Kaplan–Yorke dimension), thus facilitating the filter setup and limiting the computational cost by using an optimal ensemble. As a corollary, this latter finding indicates that the ensemble perturbations in the MLEF reflect the intrinsic system error dynamics rather than a sampling of realizations of an unknown error covariance.  相似文献   
5.
Dolomitization of a carbonate platform can occur at different times and in different diagenetic environments, from synsedimentary to deep burial settings. Numerical simulations are valuable tools to test and select the model that, among different hypotheses compatible with field and geochemical data, best honour mass balance, kinetic and thermodynamic constraints. Moreover, the simulation can predict the distribution of the dolomitized bodies in the subsurface and evaluate porosity changes; valuable information for the oil industry. This study is the first attempt to reproduce and investigate the compaction dolomitization model. The diagenetic study of the Jurassic carbonate basin and palaeohigh system of the Po Plain indicates that the carbonates of the palaeohighs were dolomitized by basin compaction fluids. The main goal of the simulations is to evaluate the origin and evolution of the dolomitizing fluids and to provide insights regarding the distribution of the potential reservoir‐dolomitized bodies in the Po Plain. The modelling process is subdivided into two steps: basin modelling and reactive transport modelling. The SEBE3 basin simulator (Eni proprietary) was used to create a three‐dimensional model of the compacting system. The results include compaction fluid flow rate from the basin to the palaeohigh, compaction duration and a determination of the total amount of fluid introduced into the palaeohigh. These data are then used to perform reactive transport modelling with the TOUGHREACT code. Sensitivities on dolomite kinetic parameters suggest that dolomitization was an efficient process even at low temperatures, with differences mainly related to the dynamics of the process. Fluid composition is one of the main constraints, the sea water derived compaction fluid is proven to be efficient for dolomitization due to its relatively high Mg content. Simulations also confirmed that permeability is the most important factor influencing fluid flow and, consequently, the dolomite distribution in the formation. Permeable fractured zones have a strong influence, diverting the dolomitizing fluids from their normal path towards overlying or lateral zones. Moreover, the simulations showed that, after dolomite replacement is complete, the dolomitizing fluids can precipitate dolomite cement, causing over‐dolomitization, with related localized plugging effects in the zone of influx. Mass balance calculations indicate that in the dolomitization compaction model, the amount of compaction water fluxed from the basin to the carbonate is the main constraint on dolomitization efficiency. This observation implies that the ratio between the volume of the basin undergoing compaction and the volume of the palaeohigh is a limiting factor on the final size of the dolomitized bodies. An isolated palaeohigh could be an ideal site for pervasive replacement dolomitization due to the large volume of compaction fluids available compared with the carbonate rock volume. In the case of large platforms, the more permeable margin lithofacies are the most likely sites for compaction model dolomitization. The combined use of a basin simulator and reactive transport modelling has proved to be a successful method to verify model reliability and it provides insights into the volumetric distribution of diagenetic products.  相似文献   
6.
Vapor-Absent Melting of Tonalite at 15-32 kbar   总被引:13,自引:0,他引:13  
The behavior of igneous continental crust during subductionis modeled by means of vapor-absent partial melting experimentson a tonalite, containing equal amounts of biotite and hornblende,at pressures of 15–32 kbar. The experiments produce leucograniticmelts coexisting with garnet + omphacitic clinopyroxene + K-feldspar+ kyanite + quartz/coesite ± phengite ± zoisite.Experimental constraints and geometrical analysis of phase equilibriashow that the hydrous phases that control dehydration-meltingof tonalites in deep thickened continental crust and in theupper mantle are phengite and zoisite. The negatively slopingamphibole + quartz vapor-absent solidus characteristic of amphibolitesis largely suppressed in tonalites, because amphibole is eliminatedby water-conserving reactions that also consume K-feldspar andkyanite and produce phengite and zoisite. The temperature atwhich melt first appears in the experiments varies from <900°Cat 15 kbar, to 1000°C at 27 kbar, to <925°C at 32kbar. Moderate degrees of partial melting (20–30%) yieldresidual assemblages with mantle-like densities but which canstill contain minor amounts of hydrous phases. Partial meltingof tonalitic crust during continental subduction can thus generateincompatible element-rich residues that would be able to remainin the mantle indefinitely, acting as long-term sources of metasomaticfluids. KEY WORDS: mantle; melting; metasomatism; tonalite; UHP metamorphism  相似文献   
7.
Xenoliths of subducted crustal origin hosted by Miocene ultrapotassicigneous rocks in the southern Pamir provide important new informationregarding the geological processes accompanying tectonism duringthe Indo-Eurasian collision. Four types have been studied: sanidineeclogites (omphacite, garnet, sanidine, quartz, biotite, kyanite),felsic granulites (garnet, quartz, sanidine and kyanite), basalticeclogites (omphacite and garnet), and a glimmerite (biotite,clinopyroxene and sanidine). Apatite, rutile and carbonate arethe most abundant minor phases. Hydrous phases (biotite andphengite in felsic granulites and basaltic eclogites, amphibolesin mafic and sanidine eclogites) and plagioclase form minorinclusions in garnet or kyanite. Solid-phase thermobarometryreveals recrystallization at mainly ultrahigh temperatures of1000–1100°C and near-ultrahigh pressures of 2·5–2·8GPa. Textures, parageneses and mineral compositions suggestderivation of the xenoliths from subducted basaltic, tonaliticand pelitic crust that experienced high-pressure dehydrationmelting, K-rich metasomatism, and solid-state re-equilibration.The timing of these processes is constrained by zircon agesfrom the xenoliths and 40Ar/39Ar ages of the host volcanic rocksto 57–11 Ma. These xenoliths reveal that deeply subductedcrust may undergo extensive dehydration-driven partial melting,density-driven differentiation and disaggregation, and sequestrationwithin the mantle. These processes may also contribute to thealkaline volcanism observed in continent-collision zones. KEY WORDS: xenolith; high-pressure; subduction; Pamir; Tibet  相似文献   
8.
Two Palaeogene fluvial fan systems linked to the south‐Pyrenean margin are recognized in the eastern Ebro Basin: the Cardona–Súria and Solsona–Sanaüja fans. These had radii of 40 and 35 km and were 800 and 600 km2 in area respectively. During the Priabonian to the Middle Rupelian, the fluvial fans built into a hydrologically closed foreland basin, and shallow lacustrine systems persisted in the basin centre. In the studied area, both fans are part of the same upward‐coarsening megasequence (up to 800 m thick), driven by hinterland drainage expansion and foreland propagation of Pyrenean thrusts. Fourteen sedimentary facies have been grouped into seven facies associations corresponding to medial fluvial fan, channelized terminal lobe, non‐channelized terminal lobe, mudflat, deltaic, evaporitic playa‐lake and carbonate‐rich, shallow lacustrine environments. Lateral correlations define two styles of alluvial‐lacustrine transition. During low lake‐level stages, terminal lobes developed, whereas during lake highstands, fluvial‐dominated deltas and interdistributary bays were formed. Terminal lobe deposits are characterized by extensive (100–600 m wide) sheet‐like fine sandstone beds formed by sub‐aqueous, quasi‐steady, hyperpycnal turbidity currents. Sedimentary structures and trace fossils indicate rapid desiccation and sub‐aerial exposure of the lobe deposits. These deposits are arranged in coarsening–fining sequences (metres to tens of metres in thickness) controlled by a combination of tectonics, climatic oscillations and autocyclic sedimentary processes. The presence of anomalously deeply incised distributary channels associated with distal terminal lobe or mudflat deposits indicates rapid lake‐level falls. Deltaic deposits form progradational coarsening‐upward sequences (several metres thick) characterized by channel and friction‐dominated mouth‐bar facies overlying white‐grey offshore lacustrine facies. Deltaic bar deposits are less extensive (50–300 m wide) than the terminal lobes and were also deposited by hyperpycnal currents, although they lack evidence of emergence. Sandy deltaic deposits accumulated locally at the mouths of main feeder distal fan streams and were separated by muddy interdistributary bays; whereas the terminal lobe sheets expand from a series of mid‐fan intersection points and coalesced to form a more continuous sandy fan fringe.  相似文献   
9.
10.
Various types of pelagic sediments occur on a dolomitic basement located at some 1000 m depth on the eastern slope of the Tyrrhenian Sea, i.e. in the most internal, collapsed and presently submerged portion of southern Apennines. The deposits include laminated limonites, muds with manganosiderite nodules, radiolarian clays, opal chert, gypsiferous muds, lutites with calcareous plankton, and all are of Quaternary age. They are interpreted as products of the interactions between submarine hydrothermal activity and deep-sea sediments, and represent the first documented case of submarine hydrothermal sediments not directly connected to active ridges or volcanic buildings and deposits. The iron-rich sediments are very similar to many other reported examples of submarine thermal activity. The radiolarian clay displays very abundant and almost exclusively radiolarian tests, and no calcareous fossils, but shows numerous dissolution traces of carbonate skeletons. It has been interpreted as deriving from a primary bloom of siliceous plankton followed by an extensive leaching of the calcareous tests on the seafloor. The radiolarian chert shows a very early and yet unknown Opal-A cement. The immediate source of the cement is biogenous silica, whereas the ultimate source is the bloom of siliceous plankton triggered by the hydrothermal and volcanic activity. The gypsum muds are the result of a hydrothermal chemical remobilization of the Messinian sulphate beds which overlie the dolomitic basement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号