首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   6篇
  国内免费   2篇
测绘学   7篇
地球物理   6篇
地质学   11篇
综合类   1篇
自然地理   15篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
11.
干旱半干旱区草原灌丛化的原因及影响-争议与进展   总被引:3,自引:0,他引:3  
高琼  刘婷 《干旱区地理》2015,38(6):1202-1212
灌丛化作为全球干旱半干旱区草原普遍发生的现象,其定义为草原生态系统中灌木/木本的生物量、密度、盖度的增加以及草本的生物量、密度、盖度的减少。草原灌丛化是气候变化和人类活动多种因素综合作用的结果。过度放牧被认为是引发草原灌丛化的主要原因之一。最新的研究结果表明过度放牧并不能导致草原灌丛化,但过度放牧后实施休牧却改变了草本与灌木的种间作用,有可能导致灌木的扩张。灌木入侵草原长期以来被认为是草原的退化,结论来源于干旱区土壤沙化的情形,在沙化的灌木林中,土壤碳库被局限于灌木株丛及其周边,使草原的碳截留和储存降低。但最近的全球性集成研究表明草原中灌木覆盖率盖度增加对生态系统可以产生积极作用,灌木可以增加土壤水分的下渗,有利于生态系统的水分储存和和养分的转化(如加强氮的矿化过程)。草原灌丛化对生态系统结构和功能影响存在景观尺度和斑块尺度上的差异。进一步研究适应灌丛化过程的管理机制,综合不断变化的气候条件因素和地域因素,采取合理的草原管理策略,对于全球草原区生产具有极其重要的意义。  相似文献   
12.
咸潮入侵对长江河口地区地下水质的影响   总被引:1,自引:0,他引:1  
长江河口咸潮入侵对上海市自来水源水水质带来不良影响,从而殃及水厂产水质量而不利于生产和市民健康,这在上海市宝山区表现尤为显著。然而,宝山区地下承压含水层水质优良,资源丰富,且水质稳定,不受咸潮入侵影响。经研究,在不产生地面沉降危害等前提条件下,宝山区尚可扩采500万米~3/年优质地下水。  相似文献   
13.
Pinyon‐juniper (PJ) cover has increased up to 10‐fold in many parts of the western U.S. in the last 140+ years. The impacts of these changes on streamflows are unclear and may vary depending on the intra‐annual distribution and amount of precipitation. Given the importance of streamflow in the western U.S., it is important to understand how shifts in PJ woodland cover may produce changes in streamflow across the region's diverse hydroclimates. To this end, we simulated the land surface water balance with contrasting woodland and grassland cover with the Hydrologiska Byråns Vattenbalansavdelning (HBV) model at a 4‐km resolution across the distribution of PJ woodlands in the western U.S. We used shifts in evapotranspiration (ET) between woodland and grassland cover as a proxy for potential changes in streamflows. Comparison of HBV model results with paired catchment studies indicated the model reasonably simulated annual decreases in ET with changes from woodland to grassland cover. For the northern and western ecoregions of the PJ distribution in the western U.S. where precipitation predominantly occurs in the winter, HBV simulated a 25 mm (37%) annual decrease in ET with conversion to grassland from woodland. Conversely, in southern ecoregions of PJ distribution with prominent summer monsoons, annual differences in ET were only 6 mm (19%). Our results suggest that only 29% of the PJ distribution, compared to an estimated 45% based on precipitation amount alone, has the potential for meaningful increases in streamflow with land cover change from woodland to grassland.  相似文献   
14.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
15.
Recent decades have seen rapid intensification of cattle production in semi-arid savannah ecosystems, increasingly on formalized ranch blocks. As a result, vegetation community changes have occurred, notably bush encroachment (increased bush dominance) in intensively grazed areas. The exact causes of this vegetation change remain widely debated. Previous studies have suggested: (i) increased leaching of water and nutrients into the subsoil in intensively grazed areas provides deeper rooting bush species with a competitive advantage for soil water and nutrients, and (ii) nutrient leaching may be exacerbated by nutrient inputs from cattle dung and urine. Our research in the Eastern Kalahari showed that in infertile sandy soils both the magnitude of soil water and concentration of soil nutrients leached into the subsoil is largely unaffected by the ecological and biochemical effects of increased cattle use. We found that despite the high soil hydraulic conductivity ( &greaterno;12 cm h−1), relatively high subsoil moisture contents and the restriction of water movement to matrix flow pathways prevent leaching losses beyond the rooting zone of savannah grass species. No significant differences in patterns of soil water redistribution were noted between bush dominant and grass dominant sites. We also found that the low nutrient status of Kalahari soils and leachate movement as matrix flow combine to allow nutrient adsorption on to soil particles. Nutrient adsorption ensures that nitrogen and phosphorus cycling remains topsoil dominated even following the removal of vegetation and direct nutrient inputs in cattle dung and urine. This conclusion refutes environmental change models that portray increases in the leaching of soil water and available nitrogen as a major factor causing bush encroachment. This provides a possible explanation for the now widely cited, but hitherto unexplained, resilience of dryland soils. We suggest that infertile sandy soils appear resilient to changes in soil water distribution and nutrient availability caused by increased cattle use. Hence, soil characteristics contribute to the resilience to permanent ecological change that is increasingly recognized as an attribute of semi-arid rangelands. © 1998 John Wiley & Sons, Ltd.  相似文献   
16.
The rangeland hydrology and erosion model (RHEM) is a new process‐based model developed by the USDA Agricultural Research Service. RHEM was initially developed for functionally intact rangelands where concentrated flow erosion is minimal and most soil loss occurs by rain splash and sheet flow erosion processes. Disturbance such as fire or woody plant encroachment can amplify overland flow erosion by increasing the likelihood of concentrated flow formation. In this study, we enhanced RHEM applications on disturbed rangelands by using a new approach for the prediction and parameterization of concentrated flow erosion. The new approach was conceptualized based on observations and results of experimental studies on rangelands disturbed by fire and/or by tree encroachment. The sediment detachment rate for concentrated flow was calculated using soil erodibility and hydraulic (flow width and stream power) parameters. Concentrated flow width was calculated based on flow discharge and slope using an equation developed specifically for disturbed rangelands. Soil detachment was assumed to begin with concentrated flow initiation. A dynamic erodibility concept was applied where concentrated flow erodibility was set to decrease exponentially during a run‐off event because of declining sediment availability. Erodibility was estimated using an empirical parameterization equation as a function of vegetation cover and surface soil texture. A dynamic partial differential sediment continuity equation was used to model the total detachment rate of concentrated flow and rain splash and sheet flow. The enhanced version of the model was evaluated against rainfall simulation data for three different sites that exhibit some degree of disturbance by fire and/or by tree encroachment. The coefficient of determination (R2) and Nash–Sutcliffe efficiency were 0.78 and 0.71, respectively, which indicates the capability of the model using the new approach for predicting soil loss on disturbed rangeland. By using the new concentrated flow modelling approach, the model was enhanced to be a practical tool that utilizes readily available vegetation and soil data for quantifying erosion and assessing erosion risk following rangeland disturbance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
17.
Though wetlands are vital for the proper functioning of terrestrial ecosystems and provisioning of a wide range of goods and services, their sustainability is being threatened by inappropriate human resource use practices due to our limited understanding of how these systems operate and lack of appropriately informed interventions. We attempt to address these limitations by using historical CORONA photographs of 1967, Landsat imagery of 1989, 1994 and 2001 and information from the literature to investigate the role of natural and human factors in influencing the direction of environmental change in the proximal reaches of Botswana's Okavango Delta. Results of this investigation point to fragmentation of natural habitats, localised degradation of areas close to perennial water supplies, significant increase in woody cover, significant decrease in open grassland, increase in scrub and shrubs, deterioration in the quality of grazing and depletion of specific woody species. With the direction of change pointing to persistent decrease in the environment's supporting potentials, there is urgent need to adopt intervention strategies potentially capable of enhancing sustainable utilisation of natural resources in this sub-region.  相似文献   
18.
依据北海市的地下水勘察、监测成果,阐述北海市的地质环境条件,地下水的开采及海水入侵灾害现状,介绍北海市海水入侵灾害勘察的主要方法和手段。  相似文献   
19.
Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertification. In China, various conservation measures, including enclosures to reduce livestock grazing, have been taken to reverse the trend of grassland desertification, yet shrubs have been reported to increase in the grasslands over the past decades. In late 2007, we set up a 400-m-by-50-m exclosure in a long-term overgrazed temperate grassland in Inner Mongolia, with the ob- jective to quantify the spatiotemporal relationship between vegetation dynamics, soil variables, and grazing exclusion. Soil moisture was continuously monitored within the exclosure, and cover and aboveground biomass of the shrubs were measured inside the exclosure in 2007, 2009, 2010, 2012, and 2013, and outside the exclosure in 2012 and 2013. We found the average shrub cover and biomass significantly increased in the six years by 103 % and 120%, respectively. The result supported the hypothesis that releasing grazing pressure following long-term overgrazing tends to trigger shrub invasion into grassland. Our results, limited to a single gradient, suggest that any conservation measures with quick release of overgrazing pressure by enclosure or other similar means might do just the opposite to accelerate shrub en- croachment in grassland. The changes in vegetation cover and biomass were regressed on the temporal average of the soil moisture content by means of the generalized least square technique to quantify the effect of the spatial autocor- relation. The result indicates that the grass cover and biomass significantly increased with the top, but decreased with the bottom layer soil moisture. The shrub cover and biomass, on the other hand, decreased with the top, but increased with bottom soil moisture, although the regression coefficients for the shrubs were not statistically significant. Hence this study supports the two-layered soil model which assumes grasses and shrubs use belowground resources in dif- ferent depths.  相似文献   
20.
In the European Alps many high mountain grasslands which were traditionally used for summer pasturing and haying have been abandoned during recent decades. Abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. Alpine areas are very fragile ecosystems and are highly sensitive to changing environmental conditions, which can affect the geomorphic regime of these high energy environments. The effect of land use intensification on erosion rates is well documented, whereas the effect of land abandonment on erosion rates is still discussed controversially, particularly in relation to its short‐term and long‐term consequences. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including run‐off generation and erosion. However, changing vegetation composition affects many other above‐ and below‐ground properties like root density, diversity and geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes. The study of soil properties along a chronosequence of green alder (alnus viridis) encroachment on the Unteralptal in central Switzerland revealed that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run‐off related erosion processes, but a decrease of slope stability against shallow landslides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号