首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22869篇
  免费   3186篇
  国内免费   4784篇
测绘学   983篇
大气科学   1830篇
地球物理   2894篇
地质学   11910篇
海洋学   3003篇
天文学   5700篇
综合类   1375篇
自然地理   3144篇
  2024年   82篇
  2023年   259篇
  2022年   675篇
  2021年   777篇
  2020年   818篇
  2019年   955篇
  2018年   737篇
  2017年   779篇
  2016年   791篇
  2015年   885篇
  2014年   1207篇
  2013年   1255篇
  2012年   1300篇
  2011年   1539篇
  2010年   1425篇
  2009年   1806篇
  2008年   1705篇
  2007年   1716篇
  2006年   1687篇
  2005年   1478篇
  2004年   1352篇
  2003年   1147篇
  2002年   986篇
  2001年   914篇
  2000年   813篇
  1999年   717篇
  1998年   640篇
  1997年   387篇
  1996年   356篇
  1995年   292篇
  1994年   273篇
  1993年   275篇
  1992年   152篇
  1991年   149篇
  1990年   97篇
  1989年   88篇
  1988年   68篇
  1987年   37篇
  1986年   42篇
  1985年   38篇
  1984年   30篇
  1983年   25篇
  1982年   26篇
  1981年   11篇
  1980年   13篇
  1979年   4篇
  1978年   7篇
  1977年   17篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
962.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
963.
Two primary concerns in performing watershed overland flow routing are the numerical instability and computational efficiency. The stability of executing an explicit scheme has to be maintained by observing the Courant–Friedrich–Lewy criterion, which is adopted to confirm that the numerical marching speed is larger than the wave celerity. Moreover, there is another criterion of time step devised in previous studies to avoid back‐and‐forth refluxing between adjacent grids. The situation of refluxing usually occurs on flat regions. In light of this, the selection of a small time increment to honor both restrictions simultaneously is believed to decrease the computational efficiency in performing overland flow routing. This study aims at creating a robust algorithm to relax both restrictions. The proposed algorithm was first implemented on a one‐dimensional overland plane to evaluate the accuracy of the numerical result by comparing it with an analytical solution. Then, the algorithm was further applied to a watershed for 2D runoff simulations. The results show that the proposed integrated algorithm can provide an accurate runoff simulation and achieve satisfactory performance in terms of computational speed.  相似文献   
964.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
965.
Borehole failure under anisotropic stresses in a sandstone is analyze numerically for various borehole sizes using a nonlinear elastic–plastic constitutive model for a Cosserat continuum. Borehole failure is identified as macroscopic failure of the borehole through the development of shear bands and breakouts. The results compare well both qualitatively and quantitatively with experimental results from polyaxial tests on Red Wildmoor sandstone. They show that the hole size effect of the borehole failure strength is independent of the far‐field stress anisotropy and follows a ? power law of the hole size. A similar scale effect equation with a ? power law is proposed for the scale effect of the maximum plastic shear strain at failure. This equation can be useful for better predicting hole‐size‐dependent failure with standard codes based on classical continua. The effect of stress anisotropy on the borehole failure stress is found to be independent of the hole size. The failure stress decreases linearly to 40% as the stress anisotropy increases. However, the maximum plastic shear strain at failure is stress anisotropy independent and therefore the critical plastic shear strain for failure is only hole‐size dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
966.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
967.
针对危岩变形预测问题,本文以非齐次指数序列的灰色模型(NGM)作为危岩变形预测的基本模型,通过对望霞危岩变形的分析结果显示,NGM(1,1,k,c)模型拟合效果明显优于GM(1,1)模型,说明危岩变形趋势更接近于非齐次指数序列。利用NGM(1,1,k,c)模型结合改进切线角可对危岩变形趋势进行分析预测,可作为危岩稳定性和发展趋势的评估依据。  相似文献   
968.
GEF海河项目于2011年完工,该项目在华北地区16个县市实施,惠及2 000多万人。本文从ET、地下水超采量削减、污染物排放量控制、地表水水资源量与利用量以及出入境水质水量5个方面对GEF海河项目实施效果进行了评价。结果表明,全流域ET值减少了68.4 mm,COD和NH3-N入河总量分别减少了36.8%和8.5%、入海总量分别减少了46.1%和36.4%,地表水资源量增加了8.94%,总用水量减少了1.99×108m3,生态环境用水量增加了7.77×108m3,河湖环境明显改善。  相似文献   
969.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   
970.
The interpretation of fluvial styles from the rock record is based for a significant part on the identification of different types of fluvial bars, characterized by the geometric relationship between structures indicative of palaeocurrent and surfaces interpreted as indicative of bar form and bar accretion direction. These surfaces of bar accretion are the boundaries of flood‐related bar increment elements, which are typically less abundant in outcrops than what would be desirable, particularly in large river deposits in which each flood mobilizes large volumes of sediment, causing flood‐increment boundary surfaces to be widely spaced. Cross‐strata set boundaries, on the other hand, are abundant and indirectly reflect the process of unit bar accretion, inclined due to the combined effect of the unit bar surface inclination and the individual bedform climbing angle, in turn controlled by changes in flow structure caused by local bar‐scale morphology. This work presents a new method to deduce the geometry of unit bar surfaces from measured pairs of cross‐strata and cross‐strata set boundaries. The method can be used in the absence of abundant flood‐increment bounding surfaces; the study of real cases shows that, for both downstream and laterally accreting bars, the reconstructed planes are very similar to measured bar increment surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号