首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   13篇
  国内免费   6篇
测绘学   42篇
大气科学   32篇
地球物理   21篇
地质学   41篇
海洋学   2篇
天文学   1篇
综合类   13篇
自然地理   51篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   10篇
  2019年   14篇
  2018年   13篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   21篇
  2013年   13篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   11篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有203条查询结果,搜索用时 62 毫秒
11.
Emission rates of biogenic volatile organic compounds emitted by the forests were estimated for five geographical regions as well as for all Switzerland. Monoterpene and isoprene emissions rates were calculated for each main tree species separately using the relevant parameters such as temperature, light intensity and leaf biomass density. Biogenic emissions from the forests were found to be about 23% of the total annual VOC emissions (anthropogenic and biogenic) in Switzerland. The highest emissions are in July and lowest in January. Calculations showed that the coniferous trees are the main sources of the biogenic emissions. The major contribution comes from the Norway spruce (picea abies) forests due to their abundance and high leaf biomass density. Although broad-leaved forests cover 27% of all the forests in Switzerland, their contribution to the biogenic emissions is only 3%. Monoterpenes are the main species emitted, whereas only 3% is released as isoprene. The highest emission rates of biogenic VOC are estimated to be in the region of the Alps which has the largest forest coverage in Switzerland and the major part of these forests consists of Norway spruce. The total annual biogenic VOC emission rate of 87 ktonnes y–1 coming from the forests is significantly higher than those from other studies where calculations were carried out by classifying the forests as deciduous and coniferous. The difference is attributed to the high leaf biomass densities of Norway spruce and fir (abies alba) trees which have a strong effect on the results when speciation of trees is taken into account. Besides the annual rate, emission rates were calculated for a specific period during July 4–6, 1991 when a photochemical smog episode was investigated in the Swiss field experiment POLLUMET. Emission rates estimated for that period agree well with those calculated for July using the average temperatures over the last 10 years.  相似文献   
12.
The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semirigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used.Correspondence should be directed to Earle B. Amey, U.S. Geological Survey, National Center 983, Reston, Virginia 20192.  相似文献   
13.
黄嫣旻  束炯  魏海萍  王强 《测绘科学》2006,31(6):133-136
本文以上海市的吴淞工业区为研究对象,借鉴美国EPA提出的AP-42方法,利用动力学粒径谱仪的粒径分析结果对公式系数进行修正,在GIS手段的辅助下对吴淞工业区铺设道路不同粒径的扬尘量进行估算,最终由V isualBasic语言和MapObjects2.0组件建立的铺设道路扬尘管理信息系统表明GIS的使用有利于加强扬尘污染的研究和控制。  相似文献   
14.
The Gran Campo Nevado (GCN) forms an isolated ice cap on the Península Muñoz Gamero (PMG) located 200 km to the south of the Southern Patagonia Icefield (SPI). We present a glacier inventory of the GCN made up by 27 drainage basins (in total 199.5 km2) and other small cirque and valley glaciers of the southern part of PMG (in total 53 km2). The glacier inventory is based on a digital elevation model (DEM) and ortho-photos. Contour lines from maps, relief information derived from Landsat TM satellite imagery from 1986 and 2002 and stereoscopic data from aerial photos were combined in a knowledge-based scheme to obtain a DEM of the area. A digital ortho-photo map based on aerial photos from 1998 and several ortho-photos based on aerial photos from 1942 and 1984 could be produced from the initial DEM. A geographical information system (GIS) served to outline the extent of the present glaciation. All major glaciers of the GCN show a significant glacier retreat during the last 60 yr. Some of the outlet glaciers lost more than 20% of their total area during this period. Overall glacier retreat amounts to 2.8% of glacier length per decade and the glacier area loss is 2.4% per decade in the period from 1942 to 2002. We hypothesise that GCN glaciers may have reacted faster and more synchronously with the observed warming trend during recent decades when compared with the SPI.  相似文献   
15.
从影响合理库存的诸多因素中,利用数理统计的思想,找出若干主要指标,通过建立神经网络模型,进行模拟仿真,寻求一种解决问题的有效方法,把库存调整到理想的状态。  相似文献   
16.
In isotope 137 Cs tracing studies, it is a premise to determine suitable 137 Cs reference inventory(CRI) plots and the CRI values. Owing to the heterogeneous spatial distribution of 137 Cs deposition in the ground and diverse, or even irregular, operations in sampling and testing procedures, CRI determination is usually faced with many difficulties and uncertainties. In addition, more difficulties occur in an investigation of a large-scale region because of time constraints and measurement cost limitations. In this study, traditional CRI acquiring methods were summarized first, and then a new complex scheme was established, involving seven core steps and coupling the model estimate and sample measurement. The above CRI determination methodology was implemented in the central-eastern Inner Mongolia Plateau. The case study results showed that the CRI in the dark chestnut soil sub-region, located in the east and south of Xing'an City, exhibited 2447 Bq·m–2; the CRI in the aeolian sandy soil sub-region, positioned in the south central Tongliao City and central Chifeng City, showed 2430 Bq·m–2; the CRI in the sandy chernozem soil sub-region, situated in the northwestern Chifeng City, presented 2384 Bq·m–2; and the CRI in the chestnut soil sub-region, in the southern Xilin Gol City, was 2368 Bq·m–2. The newly proposed CRI determination scheme was proved effective, and the determined CRI plots and CRI values were convincing. The methodology offered a framework for 137 Cs tracing studies in large-scale regions or long-distance transects.  相似文献   
17.
A computational canopy volume (CCV) based on airborne laser scanning (ALS) data is proposed to improve predictions of forest biomass and other related attributes like stem volume and basal area. An approach to derive the CCV based on computational geometry, topological connectivity and numerical optimization was tested with sparse-density, plot-level ALS data acquired from 40 field sample plots of 500–1000 m2 located in a boreal forest in Norway. The CCV had a high correspondence with the biomass attributes considered when derived from optimized filtrations, i.e. ordered sets of simplices belonging to the triangulations based on the point data. Coefficients of determination (R2) between the CCV and total above-ground biomass, canopy biomass, stem volume, and basal area were 0.88–0.89, 0.89, 0.83–0.97, and 0.88–0.92, respectively, depending on the applied filtration. The magnitude of the required filtration was found to increase according to an increasing basal area, which indicated a possibility to predict this magnitude by means of ALS-based height and density metrics. A simple prediction model provided CCVs which had R2 of 0.77–0.90 with the aforementioned forest attributes. The derived CCVs always produced complementary information and were mainly able to improve the predictions of forest biomass relative to models based on the height and density metrics, yet only by 0–1.9 percentage points in terms of relative root mean squared error. Possibilities to improve the CCVs by a further analysis of topological persistence are discussed.  相似文献   
18.
This paper introduces PTrees, a multi-scale dynamic point cloud segmentation dedicated to forest tree extraction from lidar point clouds. The method process the point data using the raw elevation values (Z) and compute height (H = Z  ground elevation) during post-processing using an innovative procedure allowing to preserve the geometry of crown points. Multiple segmentations are done at different scales. Segmentation criteria are then applied to dynamically select the best set of apices from the tree segments extracted at the various scales. The selected set of apices is then used to generate a final segmentation. PTrees has been tested in 3 different forest types, allowing to detect 82% of the trees with under 10% of false detection rate. Future development will integrate crown profile estimation during the segmentation process in order to both maximize the detection of suppressed trees and minimize false detections.  相似文献   
19.
20.
Spatially-explicit estimation of aboveground biomass(AGB) plays an important role to generate action policies focused in climate change mitigation,since carbon(C) retained in the biomass is vital for regulating Earth’s temperature.This work estimates AGB using both chlorophyll(red,near infrared) and moisture(middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer(MODIS) and MOD44B vegetation continuous fields(VCF) data.The study area is located in San Luis Potosí,Mexico,a region that comprises a part of the upper limit of the intertropical zone.AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature.Linear and nonlinear(expo-nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables.Highly-significant correlations(p = 0.01) were found between all the explaining variables tested.NDVI62,linked to chlorophyll content and moisture stress,showed the highest correlation.The best model(nonlinear) showed an index of fit(Pseudo-r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables.Validation correlation coefficients were similar for both models:lin-ear(r = 0.87**) and nonlinear(r = 0.86**).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号