首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In isotope 137 Cs tracing studies, it is a premise to determine suitable 137 Cs reference inventory(CRI) plots and the CRI values. Owing to the heterogeneous spatial distribution of 137 Cs deposition in the ground and diverse, or even irregular, operations in sampling and testing procedures, CRI determination is usually faced with many difficulties and uncertainties. In addition, more difficulties occur in an investigation of a large-scale region because of time constraints and measurement cost limitations. In this study, traditional CRI acquiring methods were summarized first, and then a new complex scheme was established, involving seven core steps and coupling the model estimate and sample measurement. The above CRI determination methodology was implemented in the central-eastern Inner Mongolia Plateau. The case study results showed that the CRI in the dark chestnut soil sub-region, located in the east and south of Xing'an City, exhibited 2447 Bq·m–2; the CRI in the aeolian sandy soil sub-region, positioned in the south central Tongliao City and central Chifeng City, showed 2430 Bq·m–2; the CRI in the sandy chernozem soil sub-region, situated in the northwestern Chifeng City, presented 2384 Bq·m–2; and the CRI in the chestnut soil sub-region, in the southern Xilin Gol City, was 2368 Bq·m–2. The newly proposed CRI determination scheme was proved effective, and the determined CRI plots and CRI values were convincing. The methodology offered a framework for 137 Cs tracing studies in large-scale regions or long-distance transects.  相似文献   

2.
Wind-driven soil erosion results in land degradation, desertification, atmospheric dust, and sandstorms. The Hunshandake Sandy Land, an important part of the Two Barriers and Three Belts project, plays important roles in preventing desert and sandy land expansion and in maintaining local sustainability. Hence, assessing soil erosion and soil accumulation moduli and analyzing the dynamic changes are valuable. In this paper, Zhenglan Banner,located on the southern margin of the Hunshandake Sandy Land, was selected as the study area. The soil erosion and accumulation moduli were estimated using the ~(137)Cs and ~(210)Pb_(ex) composite tracing technique, and the dynamics of soil erosion and soil accumulation were analyzed during two periods. The results are as follows:(1) the regional ~(137)Cs reference inventory was 2123.5±163.94 Bq/m~2, and the regional ~(210)Pb_(ex) reference inventory was 8112±1787.62 Bq/m~2.(2) Based on the ~(137)Cs isotope tracing analysis, the erosion moduli ranged from –483.99 to 740.31 t·km~(-2)·a~(-1). Based on the ~(210)Pb_(ex) isotope tracing analysis, the erosion moduli ranged from –441.53 to 797.98 t·km~(-2)·a~(-1).(3) Compared with the earliest 50 years, the subsequent 50 years exhibited lower soil erosion moduli and accumulation moduli.Therefore, the activities of local sand dunes weakened, and the quality of the local ecological environment improved. The multi-isotope composite tracing technique combining the tracers ~(137)Cs and ~(210)Pb_(ex) has potential for similar soil erosion studies in arid or semiarid regions around the world.  相似文献   

3.
The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system(GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation(RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t·km~(–2)·a~(–1), the minimum possible soil erosion modulus was 1921 t·km~(–2)·a~(–1), and the soil erosion control degree was 0.57(medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t·km~(–2)·a~(–1) increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg·a~(–1) to 459 kg·a~(–1) under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.  相似文献   

4.
<正> The activity of caesium-137(Bq/kg)in the crustaceous lichens and othersamples was determined to prove the feasibility that crustaceous lichens work as a sen-sitive biology monitor to record the caesium-137(Bq/kg)radiation levels of terrestri-al environment.The measurements were performed with GEM series HPGe(high-pu-rity Germanium)coaxial detector system(ADCAM-100)made by EC & GORTECCompany in USA.It was found that the activity of caesium-137(Bq/kg)in the cru-staceous lichens was one order of magnitude higher than that found in surface soil,and was over three orders of magnitude higher than those found in the familiar biologi-cal samples.These results proved that crustaceous lichens may be one of the mostsensitive biolog-ical monitors about the remote transmission and environmental radia-tion levels of caesium-137.  相似文献   

5.
上海市崇明岛农田土壤重金属的环境质量评价(英文)   总被引:1,自引:0,他引:1  
The environmental quality of heavy metals (Pb,Cd,Cr,As,Hg) in agricultural surface soil of Chongming Island was assessed by national,local and professional standards based on a large scale investigation,in which 28 samples from vegetable plots,65 samples from paddy fields and 9 samples from watermelon fields were collected from whole island area. Results showed that the average concentration of Pb,Cd,Cr,As and Hg was 21.6 mg·kg-1,0.176 mg·kg-1,69.4 mg·kg-1,9.209 mg·kg-1 and 0.128 mg·kg-1,respectively. Compared with the background value of Shanghai City soil,except for Pb and Cr,all the other heavy metals average concentrations in Chongming Island agricultural surface soil exceeded their corresponding natural-background values. The concentrations of Cd,As and Hg were 33.0%,1.2% and 26.3% higher than the background value of Shanghai City,respectively. In addition,inverse distance interpolation (IDW) tool of GIS was also applied to study the spatial variation of heavy metals. The results indicated that most of agricultural soil quality was good,and the ratio of ecological,good soil,certified soil and disqualified soil were 1.26%,97.1%,1.47% and 0.12%,respectively. About 10.1%,85.7%,27.0%,55.4% and 55.2% soil samples exceeded the Pb,Cd,Cr,As and Hg background value of Shanghai City,respectively. Among these three land use type soils,vegetable soil was most seriously polluted by heavy metals,which is probably related to the over-application of pesticides. The annual deposition fluxes of Pb,Cd,As and Hg were 7736 μg.m-2.a-1,208 μg.m-2.a-1,2238 μg.m-2.a-1 and 52.8 μg.m-2.a-1,respectively. Crop straw burning was the important source of heavy metals of atmospheric deposition,and atmospheric deposition contributed a lot to heavy metals in agricultural soil in Chongming Island.  相似文献   

6.
Using humic acid for remediation of sandy soils contaminated by heavy metal   总被引:1,自引:0,他引:1  
This paper presents the development of a new remediation technology for contaminated sandy soil using humic acid (HA). Distribution of amount of Cr (VI) in the aqueous or solid system containing humic acid and sandy soil, was studied using batch experiments, es-pecially for effects of reaction time, pH, concentrations, temperature and irradiation on the reduction of Cr (VI), and the optimum reaction conditions. The results indicated a significant increase of the adsorption of Cr (VI) because of the complexion reaction between HA and Cr (VI) that occurred under acidic condition. The reaction mechanisms of HA with chromium on sand surfaces were certified. Thus it came to a conclusion that HA could be used effectively on remediation of Cr (VI)-contaminated soil and groundwater in a wide range of pH, with or without sunlight. These results suggest that the organic-inorganic complex-such as sandy soils coated with humic substances-is important as a metal reservoir in the environment.  相似文献   

7.
We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.  相似文献   

8.
We studied a soil seed bank in the Stipa breviflora desert steppe under three grassland management systems, namely continuous grazing, rotational grazing, and no grazing, from 1999 until 2007. The germinable seed bank species in rotational, continuous and no grazing were 11, 9 and 8 species, respectively. Rotational grazing increased the number of seed bank plant species and perennial grasses. The density of germinal soil seed bank was significantly higher in the enclosed area (19,533.33 seeds/m2) than those in rotational (3,233.33 seeds/m2) and continuous grazing areas (2,553.60 seeds/m2). The vertical distribution of the soil seed bank had a similar trend: 75.06%–83.19% of the seeds are distributed in the top 0–5 cm soil layer, 14.16%–21.68% in the 5–10 cm layer, and 2.65%–4.95% in the 10–15 cm layer, which varied between the grazing treatments. Density of the soil seed bank was significantly higher in the enclosed area, and there was no significant difference between rotational and continuous grazing. The Margalef and Shannon-Wiener indices for the soil seed bank were higher for rotational grazing treatment than for continuous grazing. The Sorensen’s similarity index for the soil seed bank between the enclosed and rotational grazing areas reached 0.857.  相似文献   

9.
Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that:(1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO_4~(2-) and Cl~-, while cations were mainly Na~+ and Ca~(2+);(2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland cropland forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March June September;(3) the spherical model was the most suitable variogram model to describe the salinity of the 0–3 cm and 3–20 cm soil layers in March and June, and the 3–20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0–3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and(4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.  相似文献   

10.
Wind erosion is a major contributor to land degradation and desertification. According to the Global Assessment of Human Induced Soil Degradation, the dryland territories of Mongolia are significantly affected by wind erosion. We used the wind erosion equation model in an Arc GIS environment to evaluate wind erosion across Mongolia. The individual factors of the wind erosion equation were parameterized using the following datasets:(a) monthly climatic data from 45 meteorological stations;(b) 16-day composites of MODIS Normalized Difference Vegetation Index data;(c) a SRTM DEM with a 90 m spatial resolution; and(d) the soil map of Mongolia. The results revealed the significant influence of aridity on wind erosion. The desert and semi-desert ecosystems were more vulnerable to wind erosion, hence more affected. The map of wind erosion revealed three major wind erosion regions where the maximum soil loss of 15–27 t/(hm~2·a) was observed. In general, the wind erosion potentials for the entire country of Mongolia are 15–27 t/(hm~2·a) in the deserts and semi-deserts, 10–15 t/(hm~2·a) in the dry steppes and 5–10 t/(hm~2·a) in the steppe regions.  相似文献   

11.
吉林省西部土地沙化动态变化   总被引:1,自引:0,他引:1  
The sandy land of the western part of Jilin Province is located in the ecotone of semi-humid and semi-arid area in the temperate zone of China. The sandy desertification has widely spread in the region because of the vulnerable natural conditions and the unreasonable human activity; as a result of this, the precious land resources and the economic development in the area have been seriously impacted. In this paper, the sandy land ecologic environment geographic information system is established based on the multi-spectral, multi-temporal Landsat TM images and field investigation. The comprehensive indexes of sandy desertification extent assessment which include vegetation degradation, wind erosion extent and soil depth are presented to classify the sandy land in western Jilin into three levels--slight, moderate and severe sandy desertification with the support of GIS platform. The results demonstrate that the sandy desertification has been partly controlled in the past twenty years, except some small sites. However, this doesn‘t necessarily mean that there is nothing for more concern. The two main causes of sandy desertification have not been eliminated yet, one is its natural factor, especially the physical and chemical characters of sandy soil and dry climate; another is the immoderate economic activity of human being that has highly accelerated the sandy desertification process.  相似文献   

12.
Soil organic carbon density(SOCD) and soil organic carbon sequestration potential(SOCP) play an important role in carbon cycle and mitigation of greenhouse gas emissions. However, the majority of studies focused on a two-dimensional scale, especially lacking of field measured data. We employed the interpolation method with gradient plane nodal function(GPNF) and Shepard(SPD) across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region(DFR) of China. The SOCP was estimated using a carbon saturation model. Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×10~6 and 25, respectively. The soil organic carbon storage(SOCS) of 40 cm and 20 cm soil layers were estimated as 22.28×10~(11) kg and 13.12×10~(11) kg simulated by GPNF method in DFR. The SOCP was estimated as 0.95×10~(11) kg considered as a carbon sink at the 20–40 cm soil layer. Furthermore, the SOCP was estimated as –2.49×10~(11) kg considered as a carbon source at the 0–20 cm soil layer. This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions.  相似文献   

13.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

14.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

15.
Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Province of western China. The variation of the soil water repellency among different minor topographies, different depths and different particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0–3 cm topsoil is significantly greater than that in the 3–6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0–0.05, 0.05–0.01 and 0.01–0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants inhabiting the sand dunes.  相似文献   

16.
The recent economic progress in China has stimulated scientific research in sandy lands in Inner Mongolia,where the Institute of Desert Research,Chinese Academy of Sciences(now CAREERI) has a leading position.Economic progress naturally creates financial resources for research,and also a dire need for solutions to emerging environmental problems following development,where wind-blown dust from Inner Mongolia adds to the severe particle air pollution in many Chinese cities.This paper presents selected results and observations made during Chinese–Swedish cooperation projects spanning 25 years.Results and experiences from sandy land research concerning climate,vegetation,root dynamics,soil carbon balances,etc.are briefly presented.The evolution of the Naiman Desertification Research Station,520 km northeast of Beijing,from 1988 to 2013 is duly noted and commented.An overview of the ICBM soil carbon model concept follows and a few recommendations for future scientific advancement in Chinese arid lands are given.  相似文献   

17.
东北黑土漫岗区长坡面坡耕地侵蚀产沙沿程变化   总被引:7,自引:0,他引:7  
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on seg-ments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm,Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation,rill cannot happen within the top 50 m,while in a year with large and inten-sive precipitation,rill can be formed starting even at 15 m from the top of the slope.  相似文献   

18.
The Stefan equation provides a useful and widely used method for predicting the depth of thawing and freezing in a soil where little site-specific information is available. The original Stefan equation was derived for only a homogeneous medium, and some algorithms have been developed for its use in a multilayered system. However, although the Stefan equation was derived more than 100 years ago, there is not a unified understanding for its use in a multilayered system. This paper examines the use of the Stefan equation in multilayered soil, based on comparing three algorithms(JL-algorithm, NM-algorithm, and XG-algorithm). We conclude that the JL and NM algorithms are incorrect, as they arose from flawed mathematical derivations. Both of these algorithms failed to recognize that the thawing depth in a multilayered soil is a piecewise function and not a continuous function of time. This work asserts that the XG-algorithm is a correct and rigorous method to determine the freezing–thawing fronts in multilayered soil.  相似文献   

19.
This experiment was conducted in three sites along a desertification gradient in Horqin Sandy Land, Northern China. Soils una-mended and amended with five types of plant residue in a wide range of C:N ratios from 9.9 to 82.2 were incubated for 70 days, during which C and N mineralization were measured. Along the desertification gradient from fixed sand dune to semifixed, and mobile sand dune: cumulative CO2-C produced from the unamended soils was 231.6, 193.3 and 61.9 μg/g, respectively, while net inorganic N was 22.9, 17.6 and 0.9 mg/kg. Soils amended with residues produced more CO2-C than the unamended soils across all sites. During the first 10 days, C mineralization rate of residue-amended soils decreased with the increase of C:N ratio at each site. However, the mineralization rates were poorly correlated with the C:N ratio in subsequent stage of incubation. Soils of mobile sand dune amended with higher C:N ratio (more than 32) residues produced less CO2-C than that of fixed and semifixed sand dune. NO3--N was the predominant form of inorganic N during the mineralization process in sandy soils. Carbon-to-nitrogen ratio (C:N) can be regarded as a predictor of the speed of N mineralization in sandy soil. The more C. microphylla residue with the lowest C:N ratio (9.9) added in soils, the more net inorganic N released. Our results suggest that C. microphylla residue when added to soil would potentially provide short-term plant available N and improve the soil quality in sandy land. The desertification process postponed the release of inorganic N from plant residues.  相似文献   

20.
In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carrière (PSC) mature forests were selected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can improve soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abundance, microbial biomass carbon and enzyme activity show an order of PSPSMCK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK. Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. P. sylvestris and P. simonii can effectively improve soil physicochemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The C mic :C ratio is an applicable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, P. sylvestris is better than P. simonii in fixing mobile dunes in sandy land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号