首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   33篇
  国内免费   6篇
大气科学   1篇
地球物理   51篇
地质学   76篇
海洋学   9篇
综合类   6篇
自然地理   11篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   12篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   14篇
  2012年   6篇
  2011年   9篇
  2010年   4篇
  2009年   7篇
  2008年   12篇
  2007年   9篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有154条查询结果,搜索用时 406 毫秒
91.
In analytical and numerical models of river meandering, initiation of meandering typically occurs uniformly along the streamwise coordinate in the channel. Based on a historical analysis of the Nierskanaal, here we show how and under which circumstances meandering has initiated in isolated sections of a channel. The Nierskanaal was constructed by the end of the 18th century, as a straight channel between the river Niers and the river Meuse. The purpose of this measure was to reduce flood risk in the downstream reaches of the river Niers. The banks on the Dutch part of the channel were left unprotected and developed into a morphodynamically active channel, featuring a meandering planform and valley incision. The planform development and incision process is analysed using topographic maps and airborne LiDAR data. Meandering initiated in three sections of the channel, where the channel sinuosity developed asynchronously. Sedimentary successions in the study area show layers of iron oxide, indicating groundwater seepage from aeolian river dunes and river deposits located nearby. Only at the spots where meandering has initiated iron oxide is found close to the surface level. This provides a clue that seepage triggered bank erosion by increasing moisture content of the banks. The isolated meandering sections expanded in the longitudinal direction. Valley incision has developed in the first decades after the construction of the channel, and diminished after a gravel layer was reached. Gravel was deposited in the downstream half of the channel bed, acting as an armouring layer. The spatial variation in meandering behaviour, as observed in the Nierskanaal, justifies efforts to implement the influence of floodplain heterogeneity and the effect of seepage on bank erosion in meander models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
92.
Tropical forest palms are often associated with specific soil conditions, yet the ecological role of edaphic limitation in Palmae has seldom been considered. In the Atlantic Coastal Forest Biome of eastern Bahia, Brazil, the piassava palm (Attalea funifera) inhabits coastal podzolic soils but not nearby latosols. This paper examines the role of changing edaphic conditions and access to sunlight in the restriction of this species to tropical podzols.  相似文献   
93.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
Many models of river meander migration rely upon a simple formalism, whereby the eroding bank is cut back at a rate that is dictated by the flow, and the depositing bank then migrates passively in response, so as to maintain a constant bankfull channel width. Here a new model is presented, in which separate relations are developed for the migration of the eroding bank and the depositing bank. It is assumed that the eroding bank consists of a layer of fine‐grained sediment that is cohesive and/or densely riddled with roots, underlain by a purely noncohesive layer of sand and/or gravel. Following erosion of the noncohesive layer, the cohesive layer fails in the form of slump blocks, which armor the noncohesive layer and thereby moderate the erosion rate. If the slump block material breaks down or is fluvially entrained, the protection it provides for the noncohesive layer diminishes and bank erosion is renewed. Renewed bank erosion, however, rejuvenates slump block armoring. At the depositing bank, it is assumed that all the sediment delivered to the edge of vegetation due to the transverse component of sediment transport is captured by encroaching vegetation, which is not removed by successive floods. Separate equations describing the migration of the eroding and depositing banks are tied to a standard morphodynamic formulation for the evolution of the flow and bed in the central region of the channel. In this model, the river evolves toward maintenance of roughly constant bankfull width as it migrates only to the extent that the eroding bank and depositing bank ‘talk’ to each other via the medium of the morphodynamics of the channel center region. The model allows for both (a) migration for which erosion widens the channel, forcing deposition at the opposite bank, and (b) migration for which deposition narrows the channel forcing erosion at the opposite bank. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
95.
曲流河砂体内部构型及不同开发阶段剩余油分布研究   总被引:1,自引:0,他引:1  
王凤兰  白振强  朱伟 《沉积学报》2011,29(3):512-519
针对高含水后期密井网条件下曲流河砂体,应用萨尔图油田萨中开发区岩芯、测井和动态生产资料,采用"模式预测,分级控制"的砂体内部构型研究方法,分层次精细研究曲流河砂体内部构型.根据现代沉积和野外露头资料总结出砂体宽厚比与侧积夹层倾角的关系,确定了描述侧积夹层产状的基本参数,并利用自动模式拟合和嵌入相模型的方法建立了侧积面三...  相似文献   
96.
In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q...  相似文献   
97.
岩心观察结果及分析化验资料显示,在石西地区西山窑组沉积物中,砂岩成熟度较低,砂、砾岩中炭屑及炭化植物枝干较多,沉积构造以平行层理、交错层理为主,并识别出了双向交错层理.结合石西地区测井资料及岩心资料,对石西地区西山窑组沉积体系展开研究.研究表明,该区属于曲流河三角洲相沉积,发育3种亚相和10种微相:曲流河三角洲平原分流...  相似文献   
98.
Stratification in channel belts is the key to reconstructing formative channel dimensions and palaeoflow conditions; this requires an understanding of the relation between river morphodynamics and set thickness. So far, theories for reconstruction of the original morphology from preserved stratification have not been tested for meandering river channels due to the lack of detailed bathymetry. This paper reports the results of an experiment that reproduced a dynamic meandering gravel‐bed river with the objectives to: (i) test the prediction of set thickness as a function of the morphology formed by a meandering river channel; and (ii) explore and explain spatial and temporal set thickness variations in the resulting channel belt. High‐resolution measurements of time‐dependent surface elevation were used to quantitatively relate the preserved stratification to the meandering river morphology. Mean set thickness agrees well with the theoretical prediction from channel morphology. The mean preserved set thickness was 30% of the mean channel depth. Due to the absence of aggradation during the experiment, this provides a lower limit for the preserved mean set thickness which is also to be expected for aggrading systems, because reworking is some orders of magnitude faster than aggradation. Furthermore, the time required to mature a channel belt and its set thickness distribution was about the same as the time required to develop and propagate bends that fill the channel belt surface. Finally, there was much systematic spatial variation in set thickness related to repetitive point bar growth and chute cut‐off. Undisturbed and thick sets occurred close to channel belt margins and more irregular stratification with stacked thinner sets was observed in the centre of the channel belt.  相似文献   
99.
The most significant morphological property of a river is the meandering process, which is dominated and governed by hydraulic, hydrologic and topographic characteristics of the river and its drainage area. It is possible to obtain reliable data on river morphology in the long term by using remotely sensed data. In this study the Filyos River, located at the Western Black Sea region of Turkey, has been selected as the study area to show the capabilities of remote sensing technology and to define the appropriate techniques for achieving the most reliable information on the river morphology by monitoring the meandering processes. The findings of the study indicate that remotely sensed data can be used successfully in defining some basic characteristics of the meandering process on rivers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
100.
Fluvial processes strongly influence riparian forests through rapid and predictable shifts in dominant species, tree density and size that occur in the decades following large floods. Modelling riparian forest characteristics based on the age and evolution of floodplains is useful in predicting ecosystem functions that depend on the size and density of trees, including large wood delivered to river channels, forest biomass and habitat quality. We developed a dynamic model of riparian forest structure that predicts changes in tree size and density using floodplain age derived from air photos and historical maps. Using field data and a riparian forest chronosequence for the 160-km middle reach of the Sacramento River (California, USA), we fit Weibull diameter distributions with time-varying parameters to the empirical data. Species were stratified into early and late successional groups, each with time-varying functions of tree density and diameter distributions. From these, we modelled how the number and size of trees in a stand changed throughout forest succession, and evaluated the goodness-of-fit of model predictions. Model outputs for the early successional group, composed primarily of cottonwoods and willows, accounted for most of the stand basal area and large trees >10 cm DBH for the first 50 years. Post-pioneer species with slower growth had initially low densities that increased slowly from the time of floodplain creation. Within the first 100 years, early successional trees contributed the most large wood that could influence fluvial processes, carbon storage, and instream habitat. We applied the model to evaluate the potential large wood inputs to the middle Sacramento River under a range of historical bank migration rates. Going forward, this modelling approach can be used to predict how riparian forest structure and other ecosystem benefits such as carbon sequestration and habitat quality respond to different river management and restoration actions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号