首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2065篇
  免费   247篇
  国内免费   445篇
测绘学   430篇
大气科学   61篇
地球物理   222篇
地质学   1283篇
海洋学   382篇
天文学   48篇
综合类   162篇
自然地理   169篇
  2024年   9篇
  2023年   35篇
  2022年   77篇
  2021年   87篇
  2020年   79篇
  2019年   91篇
  2018年   48篇
  2017年   98篇
  2016年   78篇
  2015年   88篇
  2014年   132篇
  2013年   120篇
  2012年   135篇
  2011年   124篇
  2010年   110篇
  2009年   123篇
  2008年   139篇
  2007年   149篇
  2006年   204篇
  2005年   117篇
  2004年   94篇
  2003年   106篇
  2002年   85篇
  2001年   78篇
  2000年   59篇
  1999年   56篇
  1998年   40篇
  1997年   34篇
  1996年   30篇
  1995年   28篇
  1994年   30篇
  1993年   19篇
  1992年   11篇
  1991年   11篇
  1990年   9篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2757条查询结果,搜索用时 188 毫秒
41.
讨论了Voronoi图的首最邻近递归收敛特性,即从任一伪最邻近对象开始,递归查找其首最邻近对象,最后必然收敛于最邻近对象.利用该特性,初步实现了移动目标直接邻近对象的连续查询.  相似文献   
42.
通过研究太原盆地大气干湿沉降中重金属元素的含量分布特征及年输入通量,讨论其对土壤中重金属元素累积的影响。同时采用富集因子法探讨降尘物质的来源。研究结果表明,降尘中重金属元素As、Cd主要来源于人为活动,Pb的来源可能是人为源和自然源。而Hg则主要来源于自然源。  相似文献   
43.
滇西沘江流域水体中重金属元素的地球化学特征   总被引:6,自引:1,他引:5  
通过测定流经兰坪金顸铅锌矿区的沘江水体中Pb、Zn、Cd、As的含量和底泥中重金属元素的化学形态的含量,分析了重金属元素的分布和化学形态的变化。结果表明,沘江水遭到了Cd污染,底泥已经成为重金属元素的蓄积库,以国家土壤环境质量标准(Ⅲ级)衡量,Pb、Zn、Cd和舡分别超标3.4倍、15.8倍、106倍和2.6倍。沘江水中重金属元素含量的峰值在矿山附近的下游,而底泥中重金属元素的峰值在矿山下游30-50km的地方,矿业活动、水流变缓、pH等水体环境条件的变化都能影响水和底泥中重金属元素的含量。底泥中的Pb以碳酸盐结合态为主,Zn和Cd以铁锰氧化物结合态为主,而As以残渣态为主。Pb、Cd、Zn三种元素的环境有效态含量比较高,对沘江流域生态环境具有潜在的巨大的危害。  相似文献   
44.
45.
Geochemical studies of the trace metal concentrations in suspended particulate matter (SPM) and sediment trap material from a permanently anoxic fjord, Framvaren, South Norway in 1989 and 1993 indicate that extremely high concentrations of zinc (max = 183920 mg/kg), copper (max = 4130 mg/kg), lead (max = 2752 mg/kg), and cadmium (max= 8.1 mg/kg) sometimes (1993) occur in the SPM collected in the anoxic water layer. The highest concentrations of Zn occur just below the redoxcline at 22 m water depth (in 1993), and copper, lead and cadmium have maximum concentrations between 30 and 80 m depth, where the amount of total SPM is at a minimum (about 0.3 mg/L). On a mass per volume (g/L) basis, the maximum concentrations of Cd, Cu and Fe occur at the interface (21m) and those of Zn occur just below the redoxcline (22 m depth). The SPM and sediment trap data suggest that the metals are precipitated as sulfide minerals in the anoxic water. The presence of particulate sulfides was confirmed by SEM studies that show the occurrence of discrete metal (Cu, Fe, Pb, and Zn) sulfide particles in size from 10–20 m as well as framboidal pyrites (1–5 m in size). Higher levels of metal sulfides at intermediate depths rather than in the deep water of Framvaren (> 100 m), may be due to input of trace metals by water exchange over the sill in the upper part of the water column. In the deep water, less metal sulfide precipitation takes place due to depletion of trace metals, and the dilution of particulate metal concentrations by organic matter and by the chemogenic formation of calcite.  相似文献   
46.
The leaching of coal and coal/asphaltite/wood-ashes in sulfuric acid (pH 1.0, 25 °C, S/L, 1:10) was studied as a function of time; acid consumption and extracted metal concentrations are presented. Whole coals consumed acid rapidly during the first few minutes, followed by slow acid consumption. Wood-, lignite-, and asphaltite-ashes consumed acid in two stages, the rapid phase extending < 30 min and the slow phase extended up to 10 days. The rapid phase was dominated by the dissolution of Ca, K and Mg ions for wood-ash, by Ca, Al and Mg ions for lignite-ash and Ca and Mg ions for asphaltite-ash. The sulfur concentration in solution and the concentrations of Ca, Fe, K, Mg, Na, P, Al and Mn in the aqueous phase verified the neutralizing capacity of the untreated ashes as well as the formation of insoluble sulfates in the residues. The slow phase kinetics differed for different fuels and exhibited leaching of several abundant elements—Fe, Al, K, Na and Mn. Trace elements (Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Th, U, V, Zn) sometimes required up to 32 h for maximal extraction from ashes. Suggestions are presented regarding the chemical nature of trace elements in the untreated coals and ashes and suitable residence times for economical industrial processes. We think it possible to combine bacteriological oxidation of sulfidic concentrates of acid leaching from ash of various qualities or even whole coals.  相似文献   
47.
The Taojiang Mn ore deposit was exploited in the early 1960s, and waste rocks were developed since then. Because the Mn ores were hosted within the metal-enriched black shales (Peng et al., 2004), the continuous mining has led to the exposure of an immense quality of black shales, which might cause serious impacts on environments. The present study deals with this environmental issue with samples from the waste rocks, and from the surrounding soils and surface water. The mineralogy of the waste rock was studied using EMPA, then a large number of elements in all waste rock, soil, and water samples were analyzed at a wide range of concentrations with high accuracy using an Elan6000 ICP-MS machine at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The waste rock is composed mostly of black shales, with minor Mn carbonates. Both black shales and Mn carbonates of the waste rock contain many sulfide minerals, mainly pyrite, with minor galena, sphalerite, chalcopyrite, and others. The waste rocks are enriched in many metals including Sc, V, Cr, Co, Ni, Fe, Mn, Cu, Zn, Pb, Th, U, Mo, Sb, Sn, Tl, and others, and the metals are mostly hosted within the sulfides. Weathering of waste rocks might cause emission of the following metals: V, Cd, Ni, Th, U, Mo, Sb, Tl, Sc, Cr, Cu, Zn, Sn, and minor Co, and Pb. The surrounding soils are highly enriched in Cr, Co, Cu, Zn, Mn, Mo, Cd, Tl, and Pb, with the enrichment factors of 2.67.3.8, 7.26, 7.27, 8.2, 5.7, 13, and 5.4, respectively. The element ratios (Rb/Cs, Fe/Mn, Nb/Zr, Hf/Zr, and Ba/Sr) and REE distribution patterns of the soils are similar to those of the waste rocks and bedrocks.  相似文献   
48.
The Raniganj Coalfield is the oldest coalfield in India that has been continuously and extensively mined since the late eighteenth century. The present study reports a geochemical investigation and environmental quality assessment using soil and water in the area surrounding a stream, locally known as Singaran Nala (Nala means storm water drains in Bengali), in the Raniganj Coalfield. Soil (top soil, mud, silty clay and laterite) and rock samples (sandstone and shale) were collected from the study area and were analyzed for trace metals (Cr, Cu, Fe, Mn, Ni and Zn). Surface waters from the stream and the Damodar River as well as ground waters from hand pumps and underground mine pits were collected. Water samples were analyzed for major ions (Na^+, Ca^2+, Mg^2+, Cl^-, HNO3^- and SO4^2-) and trace metals (Cu, Fe, Mn, Ni, and Zn). Trace metal concentrations in soil samples are found higher than the average world soil composition. Nevertheless, trace metal (Cr, Cu, Ni and Zn) concentrations in soils exceed or reach the maximum allowable concentrations (MAC) proposed by the European Commission for agricultural soils. In particular, Ni concentrations exceed the typical value for cultivated soils. Chromium, Cu and Ni concentrations in laterite and Cr concentration in topsoil exceed the ecotoxicological limit.  相似文献   
49.
It has been found that stream waters were severely contaminated with wastes from a long-time smelting factory in Hezhang, Guizhou, China. The main sources of contamination are the smelting wastes stored in the open air and abandoned in the vicinity of stream. A method of lead isotope was adopted in order to identify relations between tailings and water contamination. Representative samples of tailings and stream sediments were collected. Mineralogical characterizations were conducted using XRD and TEM/SEM, while acid digestion was carried out for determining metal contents. BCR sequential leaching tests were performed in order to assess metal mobility. The tremendous ‘actual' and ‘potential' mobility of heavy metals indicates that the smelting waste and stream sediments present a considerable threat to the environment. Besides the chemical remobilization of heavy metals from the sediments and the reworking of riverbed sediments act as a secondary source of pollution. Also groundwater and stream water were sampled in specific locations and were measured.  相似文献   
50.
Since industrial revolution, the "greenhouse effect" is one of the most important global environmental issues. Of all the greenhouse gases, CO2 is responsible for about 64% of the enhanced "greenhouse effect", making it the target for mitigation, so reducing anthropogenic discharge of carbon dioxide attracts more and more attention. Geological sequestration of CO2 in deep saline aquifers is one of the most promising options. But because unknown fractures and faults may exist in the caprock layers which can prevent the leakage of CO2, CO2 will leak upward into upper potable aquifers, and lead to adverse impacts on the shallow potable aquifers. In order to assess the potential effect of CO2 leakage from underground storage reservoirs on fractures and water quality of potable aquifers, this study used the non-isothermal reactive geochemical transport code TOUGHREACT developed by Xu et al to establish a simplified 2-D model of CO2 underground sequestration system, which includes deep saline aquifers, caprock layers, and shallow potable aquifers, and study and analyze the changes of mineral and aqueous components. The simulation results indicated that the minerals of deep saline aquifers and fractures should be mainly composed of aluminosilicate and silicate minerals, which not only enhance the mass of CO2 sequestrated by mineral trapping, but also decrease the porosity and permeability of caprock layers and fractures to prevent and reduce CO2 leakage. The results from deep saline aquifers showed that the mass of carbon dioxide trapped by minerals and solution phases is limited, the rest remained as a supercritical phase, and so once the caprock aquifers have some unknown fractures, the free carbon dioxide phase may leak from CO2 geologic sequestration reservoirs by buoyancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号