首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1866篇
  免费   286篇
  国内免费   485篇
测绘学   287篇
大气科学   271篇
地球物理   752篇
地质学   647篇
海洋学   393篇
天文学   34篇
综合类   157篇
自然地理   96篇
  2023年   15篇
  2022年   23篇
  2021年   41篇
  2020年   58篇
  2019年   77篇
  2018年   65篇
  2017年   75篇
  2016年   77篇
  2015年   110篇
  2014年   90篇
  2013年   165篇
  2012年   120篇
  2011年   120篇
  2010年   112篇
  2009年   121篇
  2008年   131篇
  2007年   142篇
  2006年   141篇
  2005年   118篇
  2004年   117篇
  2003年   103篇
  2002年   85篇
  2001年   71篇
  2000年   65篇
  1999年   57篇
  1998年   54篇
  1997年   34篇
  1996年   30篇
  1995年   45篇
  1994年   35篇
  1993年   26篇
  1992年   14篇
  1991年   18篇
  1990年   12篇
  1989年   13篇
  1988年   9篇
  1987年   18篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2637条查询结果,搜索用时 15 毫秒
991.
土体动力参数是表征土动力特性的重要指标,对抗震计算具有重要影响。利用GCTS共振柱仪对淤泥、黏土、粉质黏土和粉砂进行共振柱试验,对Hardin—Drnevich提出的双曲线模型的模量比表达式进行线性拟合与改进的非线性拟合对比研究。结果表明:改进的非线性拟合得到的曲线较线性拟合曲线更加接近原始数据点;在低应变处,非线性拟合残差小于线性拟合残差,随着应变增加非线性拟合的残差接近线性拟合残差,在大应变处线性拟合残差小于非线性拟合的残差;改进的非线性拟合的最大动剪切模量Gdmax和参考剪应变γr的标准误差及置信区间宽度均比线性拟合的结果小;拟合优度评价指标表明改进非线性拟合效果优于线性拟合效果。将线性拟合结果作为非线性拟合方法的初始值的改进方法较线性拟合方法具有更高的准确性和稳定性,并具有更高的应用价值。  相似文献   
992.
Late Ordovician glacial deposits of the Mamuniyat Formation are the main oil reservoir in the Murzuq Basin in Libya. Autopicking the strong reflection at the base of the Silurian shales can be used to map the top of the Mamuniyat reservoir in the area where it is in direct contact with the Silurian shales. However, in areas where the Bir Tlacsin Formation, a mud‐prone unit, is between the Silurian shales and the Mamuniyat reservoir, the top of the Mamuniyat is difficult to pick because the units juxtaposed across the boundary are too similar to produce a strong reflection. Defining the Bir Tlacsin facies is important because it impacts hydrocarbon accumulation and migration. To predict the distribution of the shaly facies of Bir Tlacsin and enhance mapping of the top Mamuniyat reservoir, we utilized a continuous wavelet transform to identify the distinctive thickness of the Hot Shale and Bir Tlacsin units. We also used genetic inversion to distinguish the bulk density of the Bir Tlacsin facies. A 64 Hz frequency gave good time resolution to the amplitude spectrum and was used to predict the facies distribution of the Bir Tlacsin. In contrast, the 24 Hz frequency showed good frequency resolution of the amplitude spectrum and was used to estimate the temporal thickness of the non‐reservoir unit of Bir Tlacsin and Hot Shale. That estimate was then used to modify the autopick horizon for the base of the Silurian reflector to approximate the top of the Mamuniyat reservoir. Because of the large density contrast between the shaly facies of the Bir Tlacsin and the underlying and overlying units, inverted density also provides a way to predict the distribution of the Bir Tlacsin through estimated temporal thickness and to enhance mapping of the top Mamuniyat reservoir through mapping the base of the inverted density of the Bir Tlacsin. A comparison between mapping of the top reservoir using spectral decomposition and inverted density with respect to autopick shows that both methods improved the top of the Mamuniyat reservoir mapping. Prediction of the presence of Bir Tlacsin and improved accuracy of the top of the Mamuniyat reservoir mapping reduce the risk of drilling the shaly facies of Bir Tlacsin and provide a better estimate of the reservoir reserve.  相似文献   
993.
Axially loaded members might experience compressive forces above their static buckling capacity because of dynamic buckling under rapid shortening. Although the subject is studied in the context of engineering mechanics, it has not been thoroughly investigated in the field of earthquake engineering. Such dynamic overshoots in the compressive capacity can also be observed for braces of concentrically braced frames (CBFs) during earthquakes. Consequently, a comprehensive investigation is conducted in this study regarding the effects of dynamic buckling of braces on the seismic behavior of steel CBFs. After providing a theoretical background, recent dynamic experiments on braces and CBFs are simulated and discussed to investigate the occurrence of dynamic overshoot during these tests. Eight archetype CBFs are then designed, modeled, and subjected to a large set of ground motions to provide a quantified insight on the frequency and anticipated level of dynamic overshoot in the compressive capacity of braces during earthquakes. Results of a total of 1600 nonlinear time history analyses revealed that dynamic overshoots occur frequently in braces and affect the behavior of CBFs notably. Considerable increases are recorded in forces transmitted to other members of CBFs as a consequence of such dynamic overshoots. Importance of incorporating these dynamic overshoots in the capacity design procedure of columns, beams, and gusset plates is highlighted. Furthermore, results of a parametric study are presented and summarized in the form of a simple formula that can be used as a guide for estimating the level of dynamic overshoot.  相似文献   
994.
The paper discusses nonlinear pushover curves for multistory moment‐frame buildings. Attention is brought to the steepening effect that elastic unloading has on the slope of the descending branch of the pushover curve, with the possibility of snapback. Displacement control is shown to be effective for the entire range of pushover analysis, including the descending branch. The method is enhanced by controlling the difference in displacement of 2 floors in the vicinity of the collapse mechanism rather than, say, controlling the roof displacement. An automated drift control version is described and tested. Analysis of a 20‐story building demonstrates that variable strength of plastic hinges and inclusion of the strength and stiffness of the gravity frames in the model affect the pushover curve significantly, especially the descending branch. The concept of dynamic pushover is described, and results are compared with the static version.  相似文献   
995.
Performance-based earthquake engineering requires accurate estimation of structural response associated with different damage states because of strong ground motion. In recent work (Meza-Fajardo and Papageorgiou, 2018, EESD), we demonstrated that a significant contribution to the response of elastic soil-structure systems for high-rise buildings is attributed to base rocking associated with Rayleigh waves. The present paper presents results of a study investigating the effects of Rayleigh waves on the response of soil-structure systems with nonlinear behavior at the level of the superstructure. By introducing a rigid-elastic rotational spring at the base of the building, we take into account the stiffness reduction due to damage to the lateral load-resisting system at its root, and with it, increased displacement demands. Considering different levels of ductility and post-yield stiffness, we investigate the impact of rocking because of Rayleigh waves on maximum and residual interstory drift ratios. Our results indicate that rocking due to surface waves should be an important consideration for design and evaluation of tall buildings, as inelastic action elongates their effective natural period, and consequently, they are more prone to be damaged by resonance and excitation of extended duration because of Rayleigh waves.  相似文献   
996.
王宗志  贺雨晖  王坤  王卫光 《湖泊科学》2021,33(5):1541-1551
为完善变化环境下水库防洪调度方案,建立了集水文非一致性诊断、水文模型还现、设计洪水计算与水库调度规则优化于一体的水库适应性调控方法体系,并应用于沂沭泗水系仕阳水库.结果表明,仕阳水库入库洪水变异点发生在1975年;利用新安江模型对水文序列还现处理,得到满足一致性的设计洪水,其洪峰、最大24 h和最大72 h洪量均值,较原设计分别增大了 19.7%、14.5%和10.0%;建立了以防洪效益最大为目标函数的水库优化调度模型,采用动态规划进行求解.提出的适应性调度方案在20年、100年、1000年和5000年一遇设计洪水条件下,较水库现行设计方案最高洪水位分别降低了0.32、0.11、0.19和0.11 m.  相似文献   
997.
Current reliability‐based control techniques have been successfully applied to linear systems; however, incorporation of stochastic nonlinear behavior of systems in such control designs remains a challenge. This paper presents two reliability‐based control algorithms that minimize failure probabilities of nonlinear hysteretic systems subjected to stochastic excitations. The proposed methods include constrained reliability‐based control (CRC) and unconstrained reliability‐based control (URC) algorithms. Accurate probabilistic estimates of nonlinear system responses to stochastic excitations are derived analytically using enhanced stochastic averaging of energy envelope proposed previously by the authors. Convolving these demand estimates with capacity models yields the reliability of nonlinear systems in the control design process. The CRC design employs the first‐level and second‐level optimizations sequentially where the first‐level optimization solves the Hamilton–Jacobi–Bellman equation and the second‐level optimization searches for optimal objective function parameters to minimize the probability of failure. In the URC design, a single optimization minimizes the probability of failure by directly searching for the optimal control gain. Application of the proposed control algorithms to a building on nonlinear foundation has shown noticeable improvements in system performance under various stochastic excitations. The URC design appears to be the most optimal method as it reduced the probability of slight damage to 8.7%, compared with 11.6% and 19.2% for the case of CRC and a stochastic linear quadratic regulator, respectively. Under the Kobe ground motion, the normalized peak drift displacement with respect to stochastic linear quadratic regulator is reduced to 0.78 and 0.81 for the URC and CRC cases, respectively, at comparable control force levels. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
998.
999.
This work discusses the simplified estimation of earthquake‐induced nonlinear displacement demands as required by nonlinear static procedures, with particular attention on short‐period masonry structures. The study focuses on systems with fundamental periods between 0.1 and 0.5 s, for which inelastic amplification of the elastic displacement demand is more pronounced; hysteretic force‐displacement relationships characteristic of masonry structures are adopted, because these structures are more commonly found within the considered period range. Referring to the results of nonlinear dynamic analyses of single‐degree‐of‐freedom oscillators, some limitations of the Eurocode 8 and Italian Building Code formulations are first discussed, then an improved equation is calibrated that relates inelastic and elastic displacement demands. Numerical values of the equation parameters are obtained, considering the amount of hysteretic energy dissipation associated with various damage mechanisms observed in masonry structures. Safety factors are also calculated to determine several percentiles of the displacement demand. It is shown that the proposed equation can be extended to more dissipative systems. Finally, the same formulation is adapted to the estimation of seismic displacements when elastic analysis procedures are employed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
1000.
A new methodology for the development of bridge‐specific fragility curves is proposed with a view to improving the reliability of loss assessment in road networks and prioritising retrofit of the bridge stock. The key features of the proposed methodology are the explicit definition of critical limit state thresholds for individual bridge components, with consideration of the effect of varying geometry, material properties, reinforcement and loading patterns on the component capacity; the methodology also includes the quantification of uncertainty in capacity, demand and damage state definition. Advanced analysis methods and tools (nonlinear static analysis and incremental dynamic response history analysis) are used for bridge component capacity and demand estimation, while reduced sampling techniques are used for uncertainty treatment. Whereas uncertainty in both capacity and demand is estimated from nonlinear analysis of detailed inelastic models, in practical application to bridge stocks, the demand is estimated through a standard response spectrum analysis of a simplified elastic model of the bridge. The simplified methodology can be efficiently applied to a large number of bridges (with different characteristics) within a road network, by means of an ad hoc developed software involving the use of a generic (elastic) bridge model, which derives bridge‐specific fragility curves. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号