首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   30篇
  国内免费   136篇
测绘学   1篇
大气科学   2篇
地球物理   13篇
地质学   339篇
海洋学   6篇
综合类   8篇
自然地理   2篇
  2024年   2篇
  2023年   3篇
  2022年   12篇
  2021年   9篇
  2020年   13篇
  2019年   16篇
  2018年   12篇
  2017年   15篇
  2016年   12篇
  2015年   21篇
  2014年   24篇
  2013年   17篇
  2012年   33篇
  2011年   10篇
  2010年   18篇
  2009年   12篇
  2008年   9篇
  2007年   15篇
  2006年   13篇
  2005年   7篇
  2004年   17篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有371条查询结果,搜索用时 218 毫秒
361.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   
362.
One of the most puzzling features of the UG1 chromitite layers in the famous exposures at Dwars River, Eastern Bushveld Complex, is the bifurcation, i.e. convergence and divergence of layers along strike that isolate lenses of anorthosite. The bifurcations have been variously interpreted as resulting from: (1) the intermittent accumulation of plagioclase on the chamber floor as lenses, terminated by crystallization of continuous chromitite layers (the depositional model); (2) late-stage injections of chromite mush or chromite-saturated melt along anastomosing fractures that dismembered semi-consolidated plagioclase cumulates (the intrusive model); (3) post-depositional deformation of alternating plagioclase and chromite cumulates, resulting in local amalgamation of chromitite layers and anorthosite lenses that wedge out laterally (the deformational model). None of these hypotheses account satisfactorily for the following field observations: (a) wavy and scalloped contacts between anorthosite and chromitite layers; (b) abrupt lateral terminations of thin anorthosite layers within chromitite; (c) in situ anorthosite inclusions with highly irregular contacts and delicate wispy tails within chromitite; many of these inclusions are contiguous with footwall and hanging wall cumulates; (d) transported anorthosite fragments enclosed by chromitite; (e) disrupted anorthosite and chromitite layers overlain by planar chromitite; (f) protrusions of chromitite into underlying anorthosite; (g) merging of chromitite layers around anorthosite domes. We propose a novel hypothesis that envisages basal flows of new dense and superheated magma that resulted in intense thermo-chemical erosion of the temporary floor of the chamber. The melting and dissolution of anorthosite was patchy and commonly inhibited by chromitite layers, resulting in lens-like remnants of anorthosite resting on continuous layers of chromitite. On cooling, the magma crystallized chromite on the irregular chamber floor, draping the remnants of anorthosite and merging with pre-existing chromitite layers excavated by erosion. With further cooling, the magma crystallized chromite-bearing anorthosite. Emplacement of multiple pulses of magma led to repetition of this sequence of events, resulting in a complex package of anorthosite lenses and bifurcating chromitite layers. This hypothesis is the most satisfactory explanation for most of the features of this enigmatic igneous layering in the Bushveld Complex.  相似文献   
363.
Most of the intrusions in the Noril’sk-Talnakh region (Siberia) are hosted in thick sedimentary sequences including abundant evaporitic and terrigenous sedimentary rocks. Three mafic-ultramafic intrusions in this region contain unusually thick massive sulfide deposits, which represent one of the world’s largest economic concentrations of Ni, Cu and PGE. The interaction of Siberian magmas with sulfate and organic matter-rich sedimentary rocks has been proposed as a possible mechanism for the origin of these exceptional sulfide deposits but the interaction process and the reaction paths have never been fully investigated. Here we clarify, by both experimental petrology and thermodynamic modeling, how sulfate and organic matter assimilation occur in mafic-ultramafic magmas, affecting magma composition, crystallization and sulfide saturation.Interaction experiments were conducted at conditions relevant to the emplacement of Noril’sk type intrusions (1200 °C, ∼80 MPa) to simulate the assimilation of sulfate and/or organic compounds by ultramafic magmas. We used a picrite from Noril’sk1 intrusion, and coal and anhydrite from the area as starting materials. The experimental results show that the incorporation of anhydrite into the magma occurs by chemical dissolution in the melt, which increases the magma’s sulfur content, but suppresses sulfide saturation and reduces olivine crystallization. Extreme assimilation leads to sulfate saturation in the magma and high dissolved sulfur contents of 0.9 ± 0.1 wt% S. Conversely, coal assimilation promotes sulfide segregation and magma crystallization, while decreasing the dissolved H2O content of the melt and increasing the amount of coexisting fluid phase.We also employed gas-melt thermodynamic calculations to quantify the effect of these assimilations on the redox conditions and the S content of the magma, and investigate the role of temperature, pressure, and initial gas content of the magma in the assimilation process. We quantify how sulfate assimilation strongly oxidizes the magma and increases its S content; both effects are intensified by increasing pressure (from 50 to 100 MPa in this study), decreasing temperature (from 1350 to 1200 °C in this study), and decreasing amounts of fluid phase initially coexisting with the magma (from 2 to 0 wt%). The interaction with organic matter (CH in this study) induces a strong reduction of the magma, even for extremely low degrees of assimilation (few tenths of wt%), and the dehydration of the melt.We therefore suggest that in the Noril’sk-Talnakh district (1) additional S was supplied to mantle derived magmas by the assimilation of evaporitic rocks, and was transported during magma ascent in the form of dissolved, oxidized S; (2) a substantial reduction of the magma inducing sulfide segregation and important crystallization then occurred due to the interaction with carbonaceous sediments. This mechanism can potentially produce massive sulfide deposits by important sulfate assimilation (locally higher than 3 wt% CaSO4) and minor organic matter assimilation (few tenths of wt% CH); however, if one of the two steps does not occur, or the assimilation in (1) is not large enough, disseminated sub economic or no sulfide deposits are produced. We conclude that exceptional conditions favoring substantial assimilation of sediments are needed to generate exceptional ore deposits like those of the Noril’sk-Talnakh district.  相似文献   
364.
陈丹丹 《地质与勘探》2017,53(1):187-197
巴布亚新几内亚利希尔岛拉多拉姆金矿处于太平洋板块与印澳板块的板块边界部位,为西南太平洋地区最大的碱性侵入岩有关的低硫型浅成低温热液型金矿。矿床赋存在Luise火山内,成矿与更新世碱性二长闪长岩侵入体有关,该岩体形成于俯冲带环境下被流体交代的上地幔的部分熔融。矿床的矿化可分为三个阶段,在岩体侵入后形成斑岩铜矿化,并在之后逐渐过渡为浅成低温热液型金矿化。该类矿床在成矿过程和矿体的分布明显受到区域性构造、蚀变带和成矿有关角砾岩等成矿结构面的控制,在找矿标志上具有特定的物化探和地质特征,具有较好的找矿远景。  相似文献   
365.
张照伟 《地质与勘探》2017,53(5):825-837
石头坑德镁铁-超镁铁质岩体位于东昆仑造山带东段五龙沟地区,邻近昆中大断裂,主要岩性为辉石岩、橄辉岩、橄榄岩、辉长岩等,铜镍矿体主要赋存于Ⅰ号岩体的辉石岩、橄辉岩和橄榄岩中。岩石地球化学特征表明,其镁铁比值(m/f)变化范围在2.77~6.01之间,属铁质系列的镁铁-超镁铁岩,有利于成铜镍矿。稀土总量总体较低,轻稀土元素之间分馏强,重稀土元素之间分馏弱。岩石总体富集LILE(Rb、Ba、Th、U),贫HFSE(Nb、Ta、Zr、Y),具有明显的Rb、U正异常及Nb、Ta的负异常。超镁铁岩类橄榄石中的Ni普遍亏损,指示深部存在硫化物的熔离作用,在橄榄石结晶之前,大量的Ni进入到硫化物中,极有利于形成富矿岩浆或矿浆。可见,伴随同化混染作用的发生,岩浆中S达到过饱和,进而硫化物发生不混溶作用,富含硫化物的岩浆运移至东昆仑造山带邻近昆中断裂构造薄弱的部位成岩成矿。铜镍矿体多赋存在含橄榄石的超镁铁质岩体内,指示石头坑德岩体深部存在高度富集铜镍的部位,是下一步的找矿方向。  相似文献   
366.
江西大背坞金矿床含矿构造带主要微量元素地球化学特征   总被引:2,自引:0,他引:2  
大背坞金矿床处于大背坞-洋乐桥NE向韧性剪切带形变、相变最强烈的西南段。含矿构造带内几种微量元素含量变化显示:构造岩的形变相变过程及其相互叠加与金矿化富集过程是同步的;成矿指示元素主要地球化学参数沿含矿构造带的变化,表明深部可能存在良好的成矿远景。   相似文献   
367.
This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block, on the geochemical compositions, zircon LA–ICP–MS U–Pb ages and Hf isotopic data. The Jiaopingdu gabbro gives the age of 1721 ± 5 Ma, the Caiyuanzi granite 1732 ± 6 Ma and 1735 ± 4 Ma, and the Wenjiacun porphyry granite 1713 ± 4 Ma, suggesting nearly contemporaneous formation time of the gabbro and granite. The bimodal feature is demonstrated by the gabbro SiO2 content of 44.64–46.87 wt% and granite 73.81–77.03 wt%. In addition, the granite has high content of SiO2 and Na2O + K2O, low content of Al2O3 and CaO, enriched in REEs (except Eu) and Zr, Nb, Ga and Y, depleted in Sr, implying it belongs to A-type granite geochemistry and origin of within-plate environment. The zircon εHf(t) of the granite and gabbro is at the range of 2–6, which is near the 2.0 Ga evolution line of the crust, implying the parent magma of the gabbro being derived from the depleted mantle and a small amount of crustal material, and the parent magma of the granite from partial melting of the juvenile crust and some ancient crustal material at the same time. Compared with 1.8–1.7 Ga magmatism during breakup of other cratons in the world, we can deduce that the Columbia has initially broken since ca. 1.8 Ga, and some continental marginal or intra-continental rifts occurred at ca. 1.73 Ga.  相似文献   
368.
何家庄—老虎窑岩体位于勉略缝合带以北,靠近秦岭微板块北部的商丹断裂带西段内部,两者的主体岩性为花岗闪长岩。本文对何家庄—老虎窑岩体进行了LA-ICP-MS锆石U-Pb同位素定年和地球化学特征以及Hf同位素特征研究。结果表明,西部何家庄附近花岗闪长岩侵位时间为235~240 Ma,东部老虎窑附近花岗岩侵位时间为239 Ma,两者均侵位于早三叠世。何家庄—老虎窑岩体花岗闪长岩均为高钾钙碱性系列,表现出强过铝质特征,属于I型花岗岩。两者岩浆锆石的εHf(t)值都是以负值为主,包含一到两个正值,地壳模式年龄为中元古代(1255~1754 Ma),指示它们的源岩有地幔物质的加入,可能是以中元古代古老地壳的部分熔融为主的壳源物质与地幔物质混合的岩浆。且表现出与埃达克质岩相似的地球化学特征,反映其岩浆可能起源于俯冲洋壳在高压环境下部分熔融产生的溶体与由于底侵作用被橄榄岩混染的下地壳部分熔融产生的高钾溶体的岩浆混合。两者的侵位年龄和成因证明了扬子板块与秦岭微板块在235~240 Ma的这个期间处于俯冲阶段。  相似文献   
369.
甘肃省巴藏幅(I48E013009)1∶50 000 矿产地质图数据库在《矿产地质调查成果图件编制指南(1∶50 000)》(讨论稿)和三位一体找矿预测地质模型的指导下编制完成。采用数据为既往1∶50 000区域地质调查实际材料图、矿产勘查报告、科学研究报告、论文和1∶50 000专项填图采集的数据,共形成数据记录:产状811条、地质界线102条、同位素年龄5条、化石2条、矿产信息21条、矿化蚀变带22条、断层86条、褶皱111条、建造65条。图面以主图和角图相结合地方式全面客观地表达了区域地质界线、岩石建造、年代、断层、褶皱轴迹、节理、劈理、皱纹线理、窗棂构造、断层面擦痕、矿化蚀变、矿产信息及典型矿床的成矿地质特征,其中包括加里东期风暴沉积和褶皱变形、早石炭世铁质结核及一系列新发现和新认识。在“建造构造”图层的属性中强调了含矿建造、矿化蚀变;在“断层”图层及“褶皱”构造图层的属性中强调了成矿构造。该数据库为区域成矿规律及工程地质、环境地质等领域的调查研究提供了基础资料,可供使用者根据需求进行检索。本文提交的巴藏幅MapGIS空间数据库数据量约为90.2 MB,Access数据库2.51 MB。  相似文献   
370.
The XV mafic-ultramafic intrusion is located in the western part of the Posht-e-Badam Block (PBB) within the Central Iranian Micro-Continent (CIMC). Petrographically, the intrusion is composed of gabbro and pyroxenite. Apatite U–Pb dating has established the crystallization age of this intrusion to be 363 ± 67 Ma. The XV intrusive rocks are tholeiitic to slightly calc-alkaline in nature and are characterized by an enrichment of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and Heavy Rare Earth Elements (HREE), respectively. The major oxide elements display continuous trends relative to SiO2. The 87Sr/86Sr(i) ratios range from 0.7045 to 0.7056, and the εNd(i) values range from 2.63 to 3.30. In addition, the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios exhibit a narrow range, varying from 18.68 to 18.70, 15.67 to 15.71, and 38.84 to 38.99, respectively. The geochemical and isotopic characteristics suggest that the parental magma was derived from a Sub- Continental Lithospheric Mantle (SCLM) that was modified by oceanic slab-derived components. The locations of the XV intrusive rocks in εNd(i) versus TDM (Ga) and Nb/La versus discrimination diagrams further support this conclusion. Fractional crystallization is identified as the dominant process influencing the formation of distinct lithological units within the XV intrusive rocks. Our newly presented isotopic and geochronological data, when considered in the regional context, suggest that the XV intrusive rocks were formed in an extensional tectonic setting. In this scenario, upwelling from the asthenospheric mantle induced heating, leading to the melting of previously subduction-modified SCLM. Comparative analysis with previously published ages indicates that extensional magmatism in the PBB continued into the Middle Paleozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号