首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5855篇
  免费   678篇
  国内免费   819篇
测绘学   585篇
大气科学   805篇
地球物理   718篇
地质学   1697篇
海洋学   848篇
天文学   32篇
综合类   437篇
自然地理   2230篇
  2024年   21篇
  2023年   66篇
  2022年   225篇
  2021年   269篇
  2020年   281篇
  2019年   303篇
  2018年   210篇
  2017年   262篇
  2016年   267篇
  2015年   277篇
  2014年   316篇
  2013年   368篇
  2012年   302篇
  2011年   365篇
  2010年   267篇
  2009年   328篇
  2008年   302篇
  2007年   310篇
  2006年   322篇
  2005年   295篇
  2004年   271篇
  2003年   184篇
  2002年   215篇
  2001年   155篇
  2000年   155篇
  1999年   160篇
  1998年   134篇
  1997年   109篇
  1996年   102篇
  1995年   84篇
  1994年   89篇
  1993年   69篇
  1992年   62篇
  1991年   41篇
  1990年   33篇
  1989年   28篇
  1988年   21篇
  1987年   23篇
  1986年   12篇
  1985年   9篇
  1984年   11篇
  1983年   11篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有7352条查询结果,搜索用时 15 毫秒
71.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   
72.
On the Polyps of the Common Jellyfish Aurelia aurita in Kagoshima Bay   总被引:1,自引:0,他引:1  
There is the natural habitat of polyps of the common jellyfish Aurelia aurita in the Taniyama area, Kagoshima Bay. We examined the attachment substrata, density, colony structure and strobilation of the polyps. The polyps were observed only on the horizontal undersurface of floating piers. They attached specifically to Mytilus shells, solitary ascidians, calcareous polychaete tubes, muddy amphipod tubes and the gap space that fouling animals peeled off the substrata. The polyp colonies were distributed in patches. Spatial distribution patterns of the polyps within their colonies were uniform. Strobilation occurred during late December to March, when water temperatures were 16–17°C, and a large number of ephyrae were released. An increase in man-made structures such as floating piers in coastal areas may lead to bloomings of Aurelia aurita medusae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
73.
蓝杆藻113菌株为海洋微藻,实验室培养证明其单位体积胞外多糖产量高。用改进的F/2改良培养液培养,添加70g/L时的NaCl盐度是该菌株胞外多糖释放的最适盐度。不添加NaCl时的盐度是菌体细胞生长的最适盐度。NaNO2营养限制抑制该菌株细胞的生长,促进该菌株胞外多糖的释放。NaH2PO4营养限制抑制该菌株细胞的生长,但对胞外多糖产量的影响不明显。MgSO4营养限制则同时抑制该菌株细胞生长和胞外多糖释放。该研究结果有助于蓝杆藻113菌株胞外多糖的生产及该菌株其它方面的开发利用。  相似文献   
74.
Microzooplankton production in the oceans   总被引:7,自引:0,他引:7  
  相似文献   
75.
The Atacama trench, the deepest ecosystem of the southern Pacific Ocean (ca. 8000 m depth) was investigated during the Atacama Trench International Expedition. Sediments, collected at three bathyal stations (1040–1355 m depth) and at a hadal site (7800 m) were analyzed for organic matter quantity and biochemical composition (in terms of phytopigments, proteins, carbohydrates and lipids), bacterial abundance, biomass and carbon production and extracellular enzymatic activities. Functional chlorophyll-a (18.0±0.10 mg m−2), phytodetritus (322.2 mg m−2) and labile organic carbon (16.9±4.3 g C m−2) deposited on surface sediments at hadal depth (7800 m) reached concentrations similar to those encountered in highly productive shallow coastal areas. High values of bacterial C production and aminopeptidase activity were also measured (at in situ temperature and 1 atm). The chemical analyses of the Atacama hadal sediments indicate that this trench behaves as a deep oceanic trap for organic material. We hypothesize that, despite the extreme physical conditions, benthic microbial processes might be accelerated as a result of the organic enrichment.  相似文献   
76.
厦门文昌鱼人工繁育批量生产技术研究   总被引:3,自引:0,他引:3  
周仁杰  方琦 《台湾海峡》2007,26(1):121-128
2005年5月21日至7月6日从厦门市翔安区欧厝附近海域采集文昌鱼亲体6批共计550余尾,移入室内进行强化培育.7月16日和17日夜间,培育的亲体自然排放精卵并受精,共获得受精卵125万粒.受精卵孵化获得浮游幼体115万尾,孵化率达92.0%.孵化的幼体经25d较高密度人工培育,获得99.2万尾体长0.31~0.72cm的文昌鱼苗及未成苗浮游幼体;分苗疏养后,又经28d继续培育,存活的幼体几乎全部潜入沙层中,最终获得体长0.55~1.30cm的厦门文昌鱼潜沙苗23.2万尾,其53d育苗成活率达20.7%.这是国内外首次人工培育获得成批量的文昌鱼增养殖苗种.进而于2005年11月6日向厦门文昌鱼自然保护区实施了国内外首次的文昌鱼资源人工增殖放流.  相似文献   
77.
Dimethylsulfide (DMS), chlorophyll a (Chl-a), accessory pigments (fucoxanthin, peridinin and 19-hexanoyloxyfucoxanthin), and bacterial production (BP) were measured in the surface layer (0–100 m) of the subarctic North Pacific, including the Bering Sea, during summer (14 July–5 September, 1997). In surface sewater, the concentrations of DMS and Chl-a varied widely from 1.3 to 13.2 nM (5.1 ± 3.0 nM, mean ± S.D., n = 48) and from 0.1 to 2.4 µg L–1 (0.6 ± 0.6 µg L–1, n = 24), respectively. In the subarctic North Pacific, DMS to Chl-a ratios (DMS/Chl-a) were higher on the eastern side than the western side (p < 0.0001). Below the euphotic zone, DMS/Chl-a ratios were law and the correlation between DMS and Chl-a was relatively strong (r 2 = 0.700, n = 27, p < 0.0001). In the euphotic zone, DMS/Chl-a ratios were higher and the correlation between DMS and Chl-a was weak (r 2 = 0.128, n = 50, p = 0.01). The wide variation in DMS/Chl-a ratios would be at least partially explained by the geographic variation in the taxonomic composition of phytoplankton, because of the negative correlation between DMS/Chl-a and fucoxanthin-to-Chl-a ratios (Fuc/Chl-a) (r 2 = 0.476, n = 26, p = 0.0001). Furthermore, there was a positive correlation between DMS and BP (r 2 = 0.380, n = 19, p = 0.005). This suggests that BP did not represent DMS and dimethylsulfoniopropionate (DMSP) removal by bacterial consumption but rather DMSP degradation to DMS by bacterial enzyme.  相似文献   
78.
Comparison of Drags on Fish Cages of Different Shapes   总被引:1,自引:0,他引:1  
1 .Introduction Commercial fishfarming in net cages is becoming widespread around the world as an importantsource of food.In PRChina ,mostfishfarmingtakes placeincalmcoastal areas .Fishcages work wellat these sites becausethe environmental forces are usua…  相似文献   
79.
The geomorphic, oceanographic, terrestrial and anthropogenic attributes of the European coastal zone are described and published data on ecosystem function (primary production and respiration) are reviewed. Four regions are considered: the Baltic Sea, Mediterranean Sea, Black Sea and the European Atlantic coast including the North Sea. The metabolic database (194 papers) suffers from a non-homogeneous geographical coverage with no usable data for the Black Sea which was therefore excluded from this part of our study. Pelagic gross primary production in European open shelves is, by far, the most documented parameter with an estimated mean of 41 mmol C m−2 d−1, the lowest value is reported in the Mediterranean Sea (21 mmol C m−2 d−1) and the highest one in the Atlantic/North Sea area (51 mmol C m−2 d−1). Microphytobenthic primary production, mostly measured in shallow areas, is extrapolated to the entire 0–200 m depth range. Its contribution to total primary production is low in all regions (mean: 1.5 mmol C m−2 d−1). Although macrophyte beds are very productive, a regional production estimate is not provided in this study because their geographical distribution along the European coastline remains unknown. Measurements of pelagic community respiration are clearly too sparse, especially below the euphotic zone, to yield an accurate picture of the fate of organic matter produced in the water column. With a mean value of 17 mmol C m−2 d−1, benthic community respiration consumes approximately 40% of the pelagic organic matter production. Estuaries generally exhibit high metabolic rates and a large range of variation in all parameters, except microphytobenthic primary production. Finally, the problem of eutrophication in Europe is discussed and the metabolic data obtained in the framework of the Land–Ocean Interactions in the Coastal Zone (LOICZ) project are compared with available direct measurements of net ecosystem production.  相似文献   
80.
Biokarst on Limestone Coasts, Morphogenesis and Sediment Production   总被引:3,自引:0,他引:3  
Abstract. Biokarst-forms on limestone coasts are developed and arranged according to the bionomic zonation. The development of biokarst is the result of bioerosion, a synergistic effect of biological corrosion by endoliths and biological abrasion by grazers.
The cumulative effect of biogenic carbonate destruction leads to coastal destruction with a resulting highly profiled morphology on the limestone surfaces along the coastal profile. Under the influence of environmental factors a zonation of organisms develops which brings in turn a zonation of erosion rates (0.1-1.1 mm a-1) resulting in biokarst-forms such as rock holes, rock pools and notches.
Products of bioerosion on limestone coasts are dissolved carbonate (by biological corrosion, 10–30% of the decomposed limestone) and particulate carbonate (by biological abrasion, 70–90% of the decomposed limestone) both of which contribute directly or indirectly to nearshore sedimentation. Size and shape of the bioerosional grains are determined by the boring pattern of the endoliths. The fine-grained sediments (maximum within the fraction 20–63 μm) contribute 3–25 % to the nearshore sediments.
Drastic changes in the biological zonation (like the mass invasion of the sea urchin Paracentrotus lividus in the Northern Adriatic since 1972 which eliminated nearly the entire macrophyte zone) due to unknown factors or pollution can have a profound effect on the bioerosion rates, altering them by as much as a factor of ten.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号