首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   7篇
  国内免费   21篇
大气科学   1篇
地球物理   11篇
地质学   145篇
海洋学   14篇
综合类   4篇
自然地理   1篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   6篇
  2001年   2篇
  2000年   8篇
  1999年   7篇
  1998年   15篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   9篇
  1985年   4篇
  1984年   2篇
排序方式: 共有176条查询结果,搜索用时 203 毫秒
61.
We have conducted elemental, isotopic, and Rock-Eval analyses of Cenomanian–Santonian sediment samples from ODP Site 1138 in the southern Indian Ocean to assess the origin and thermal maturity of organic matter in mid-Cretaceous black shales found at this high-latitude location. Total organic carbon (TOC) concentrations range between 1 and 20 wt% in black to medium-gray sediments deposited around the Cenomanian–Turonian boundary. Results of Rock-Eval pyrolysis indicate that the organic matter is algal Type II material that has experienced modest alteration. Important contributions of nitrogen-fixing bacteria to the amplified production of organic matter implied by the high TOC concentrations is recorded in δ15N values between −5 and 1‰, and the existence of a near-surface intensified oxygen minimum zone that favored organic carbon preservation is implied by TOC/TN ratios between 20 and 40. In contrast to the marine nature of the organic matter in the Cenomanian–Turonian boundary section, deeper sediments at Site 1138 contain evidence of contributions land-derived organic matter that implies the former presence of forests on the Kerguelen Plateau until the earliest Cenomanian.  相似文献   
62.
塔里木盆地侏罗系煤岩显微组分在封闭体系热模拟产物的色质分析表明,各显微组分的正构烷烃系列化合物的碳数均呈双峰型分布。随着温度的升高,后峰相对强度逐渐降低,表明正构烷烃系列化合物在热作用下易发生降解。由于各显微组分化学组成和结构的不同,它们的生烃过程也各不相同。镜质组热降解排烃需要较高热能,以产气为主;壳质组热效应作用下可以有效排烃,为好生烃组分;惰质组虽然生烃潜力有限,但产出烃类的稳定性较好,不易受热降解效应的影响,可以作为气源岩。在整个热模拟实验中,煤岩各显微组分表现为姥鲛烷优势,随着热模拟温度生高,Pr/Ph值表现为先增加后逐渐降低的变化趋势。  相似文献   
63.
桦甸油页岩基础物化特性研究   总被引:1,自引:0,他引:1  
对油页岩进行了扫描电镜分析,测定了油页岩的密度、可磨性、灰分特性、比热、含油率等物性参数,并采用热重分析仪详细研究了油页岩样品在典型工况下的热解及燃烧特性。结果表明,桦甸油页岩是一种高灰分、高挥发分、低热值和具有中等结渣倾向的劣质燃料;不同矿区的油页岩的品质有区别,其中大城子四层的油页岩品质较好,公郎头十一层较差。利用热解和燃烧的实验数据建立的油页岩热解及燃烧的动力学模型表明,油页岩的热解反应属于一级反应,其燃烧反应在不同的温度范围内可用不同的反应级数来描述。  相似文献   
64.
The selection and pre-treatment of reliable organic fractions for radiocarbon age determination is fundamental to the development of accurate chronologies. Sampling from tropical lakes is particularly challenging given the adverse preservation conditions and diagenesis in these environments. Our research is the first to examine and quantify the differences between radiocarbon ages from different carbon fractions and pretreatment protocols from tropical lake sediments. Six different organic fractions (bulk organics, pollen concentrate, cellulose, stable polycyclic aromatic carbon (SPAC), macrocharcoal >250 μm and microcharcoal >63 μm) were compared at six different depths along a 1.72 m long core extracted from Sanamere Lagoon, Cape York Peninsula, northern Australia. Acid-base-acid (ABA), modified ABA (30% hydrogen peroxide + ABA), 2chlorOx (a novel cellulose pre-treatment method) and hydrogen pyrolysis (hypy) were used to pre-treat the organic fractions. The oldest date is ∼31,300 calibrated years before present (cal yr BP) and the youngest is ∼2800 cal yr BP, spanning ∼28,500 years. The smallest offset between the minimum and the maximum age for different fractions and across pretreatment methods at a given depth was found to be 832 years (between SPAC and pollen) and the largest ∼16,750 years (between pollen concentrate and SPAC). The SPAC fractions pre-treated with hypy yielded older ages compared to all other fractions in most cases, while bulk organics yielded consistently younger ages. The magnitude and consistency of the offsets and the physical and chemical properties of the tested organic fractions suggest that SPAC is the most reliable fraction to date in tropical lake sediments and that hypy successfully removes exogenous carbon contamination.  相似文献   
65.
The Dongpu Depression is a secondary salt-bearing tectonic unit in the Bohai Bay Basin, eastern China. The depositional environment of this depression regarding its Paleogene strata is clearly different in plane, including the saltwater environment(SE) in the north, the freshwater environment(FE) in the south and the brackish water environment(BE) in the middle. The result of oil and gas exploration in the Dongpu Depression shows that more than 90% of the proven oil reserves are distributed in the northern saltwater environment. Previous studies indicate that the organic geochemistry characteristics and the hydrocarbon generation capacity of the source rocks are very clearly diverse under different environments, which results in the significant differences in the proved reserves between the north and the south. In order to further explore the differences in the hydrocarbon generation capacity of the source rocks under distinct depositional environments and the mechanism of their occurrence, three samples from different depositional environments(W18-5 for SE, H7-18 for BE, CH9 for FE) were used for confined gold tube pyrolysis experiments. The results show that the CH4 yields of W18-5, H7-18 and CH9 increase with increasing temperature, the maximum yields being 405.62 mg/g TOC, 388.56 mg/g TOC and 367.89 mg/g TOC, respectively. The liquid hydrocarbon yields of W18-5, H7-18 and CH9 firstly increase with increasing temperature and then decrease after the critical temperatures. The maximum yields of C6-14 are 149.54 mg/g TOC, 140.18 mg/g TOC and 116.94 mg/g TOC, the maximum yields of C14+ being 852.4 mg/g TOC, 652.6 mg/g TOC and 596.41 mg/g TOC, respectively for W18-5, H7-18 and CH9. To summarize, the order of hydrocarbon potential from high to low is W18-5, H7-18 and CH9. On this basis, through analyzing the influencing factors of hydrocarbon differences, this paper reveals that the saltwater environment is characterized by 4 factors: higher salinity, halophilic algae, high paleo-productivity and a strongly reducing environment, which are beneficial to the enrichment of organic matter and lead to the formation of high levels of sapropelite and exinite. According to the variation of oil and gas components in the pyrolysis experiments, the hydrocarbon generation process is divided into three stages: kerogen cracking, oil cracking and C2-5 cracking. Combined with hydrocarbon generation characteristics and stages, the evolutionary model of hydrocarbon generation for source rocks under different environments is established.  相似文献   
66.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   
67.
采用开放体系在线程序升温裂解-色谱-碳同位素比值质谱技术(PY/GC-IRMS)考察了煤系有机质热演化过程中甲烷瞬时生成速率与碳同位素组成特征,提出煤系有机质不同热演化进程甲烷生成的四个阶段:生油窗阶段、主生气阶段、晚期生气阶段(芳环侧链断裂)、开环-缩聚作用阶段.以一级反应动力学为基础,采用高斯分布算法,计算了各阶段甲烷产出的动力学参数.研究结果对煤成气资源量的正确评价,特别是近年来有机质高演化阶段成气潜力的评价具有重要指示意义.  相似文献   
68.
测定矿物或水中硫酸根的氧同位素组成(δ18O)能够识别物质来源及转化过程,常用的方法是将硫酸根转化为硫酸钡再用离线或在线法测试其δ18O值。目前普遍采用1420℃在线测试硫酸钡的氧同位素组成,该方法极易缩短反应炉的寿命,通过添加还原剂碳可以降低反应温度,但是已有报道对于添加还原剂后的反应温度讨论较少。本文选择镀镍碳(Ni-C)作为还原剂,将样品经Ni-C高温处理后进行一系列条件实验,确认了采用元素分析仪-稳定同位素质谱仪(EA-IRMS)测定硫酸钡中氧同位素组成的分析方法的关键技术参数:硫酸钡在线反应温度为1350℃; Ni-C与硫酸钡样品量的质量比范围选择0. 73~2. 15;为了获得更加精确的数据,硫酸钡与Ni-C用量都控制在700±100μg。在以上实验条件下,EA/HT-IRMS测定硫酸钡δ18O值的精密度为±0. 12‰~±0. 26‰,优于在线法已报道的精密度±0. 20‰~±0. 50‰。本方法在满足测试精密度的前提下,通过添加Ni-C降低了硫酸钡在线反应温度,延长了反应炉使用寿命。  相似文献   
69.
Ever since a breakthrough of marine shales in China, lacustrine shales have been attracting by the policy makers and scientists. Organic-rich shales of the Middle Jurassic strata are widely distributed in the Yuqia Coalfield of northern Qaidam Basin. In this paper, a total of 42 shale samples with a burial depth ranging from 475.5 m to 658.5 m were collected from the Shimengou Formation in the YQ-1 shale gas borehole of the study area, including 16 samples from the Lower Member and 26 samples from the Upper Member. Geochemistry, reservoir characteristics and hydrocarbon generation potential of the lacustrine shales in YQ-1 well were preliminarily investigated using the experiments of vitrinite reflectance measurement, maceral identification, mineralogical composition, carbon stable isotope, low-temperature nitrogen adsorption, methane isothermal adsorption and rock eval pyrolysis. The results show that the Shimengou shales have rich organic carbon (averaged 3.83%), which belong to a low thermal maturity stage with a mean vitrinite reflectance (Ro) of 0.49% and an average pyrolytic temperature of the generated maximum remaining hydrocarbon (Tmax) of 432.8 °C. Relative to marine shales, the lacustrine shales show low brittleness index (averaged 34.9) but high clay contents (averaged 55.1%), high total porosities (averaged 13.71%) and great Langmuir volumes (averaged 4.73 cm−3 g). Unlike the marine and marine-transitional shales, the quartz contents and brittleness index (BI) values of the lacustrine shales first decrease then increase with the rising TOC contents. The kerogens from the Upper Member shales are dominant by the oil-prone types, whereas the kerogens from the Lower Member shales by the gas-prone types. The sedimentary environment of the shales influences the TOC contents, thus has a close connection with the hydrocarbon potential, mineralogical composition, kerogen types and pore structure. Additionally, in terms of the hydrocarbon generation potential, the Upper Member shales are regarded as very good and excellent rocks whereas the Lower Member shales mainly as poor and fair rocks. In overall, the shales in the top of the Upper Member can be explored for shale oil due to the higher free hydrocarbon amount (S1), whereas the shales in the Lower Member and the Upper Member, with the depths greater than 1000 m, can be suggested to explore shale gas.  相似文献   
70.
The influence of oil-expulsion efficiency on nanopore development in highly mature shale was investigated by using anhydrous pyrolysis (425–600 °C) on solvent-extracted and non-extracted shales at a pressure of 50 MPa. Additional pyrolysis studies were conducted using non-extracted shales at pressures of 25 and 80 MPa to further characterize the impact of pressure on pore evolution at high maturity. The pore structures of the original shale and relevant artificially matured samples after pyrolysis were characterized by using low-pressure nitrogen and carbon-dioxide adsorption techniques, and gas yields during pyrolysis were measured. The results show that oil-expulsion efficiency can strongly influence gas generation and nanopore development in highly mature shales, as bitumen remained in shales with low oil expulsion efficiency significantly promotes gaseous hydrocarbon generation and nanopore (diameter < 10 nm) development. The evolution of micropores and fine mesopores at high maturity can be divided into two main stages: Stage I, corresponding to wet gas generation (EasyRo 1.2%–2.4%), and Stage II, corresponding to dry gas generation (EasyRo 2.4%–4.5%). For shales with low oil expulsion efficiency, nanopore (diameter < 10 nm) evolution increases rapidly in Stage I, whereas slowly in Stage II, and such difference between two stages may be attributed to the changes of the organic matter (OM)’s mechanical properties. Comparatively, for shales with high oil expulsion efficiency, the evolution grows slightly in Stage I, not as rapidly as shales with low efficiency, and decays in Stage II. The different pore evolution behaviors of these two types of shales are attributed to the contribution of bitumen. However, the evolution of medium–coarse mesopores and macropores (diameter >10 nm) remains flat at high maturation. In addition, high pressure can promote the development of micropores and fine mesopores in highly mature shales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号