首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4501篇
  免费   1031篇
  国内免费   1925篇
测绘学   81篇
大气科学   228篇
地球物理   2129篇
地质学   3293篇
海洋学   930篇
天文学   12篇
综合类   347篇
自然地理   437篇
  2024年   11篇
  2023年   59篇
  2022年   136篇
  2021年   138篇
  2020年   194篇
  2019年   256篇
  2018年   235篇
  2017年   219篇
  2016年   265篇
  2015年   254篇
  2014年   289篇
  2013年   364篇
  2012年   295篇
  2011年   349篇
  2010年   306篇
  2009年   357篇
  2008年   326篇
  2007年   360篇
  2006年   376篇
  2005年   303篇
  2004年   290篇
  2003年   251篇
  2002年   220篇
  2001年   163篇
  2000年   206篇
  1999年   187篇
  1998年   155篇
  1997年   153篇
  1996年   138篇
  1995年   100篇
  1994年   102篇
  1993年   85篇
  1992年   86篇
  1991年   47篇
  1990年   50篇
  1989年   34篇
  1988年   23篇
  1987年   18篇
  1986年   10篇
  1985年   11篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1979年   6篇
  1977年   8篇
  1954年   6篇
排序方式: 共有7457条查询结果,搜索用时 140 毫秒
101.
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a 'flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.  相似文献   
102.
103.
High-pressure synchrotron infrared (IR) absorption spectra were collected between 650 and 4,000 cm−1 at ambient temperature for hydrous Mg-ringwoodite (γ-Mg2SiO4) up to 30 GPa. The main feature in the OH stretching region is an extremely broad band centred at 3,150 cm−1. The hydrogen bond is strong for most protons and the most probable site for protonation is the tetrahedral edge. With increasing pressure, this band shifts downward while decreasing its integrated intensity until disappearance at a pressure of 25 GPa. Only one band at 2,450 cm−1 and an absorption plateau persist with a maximum wavenumber of 3,800 cm−1. This behaviour is reversible upon pressure release. We interpret this as a second-order phase transition occurring in hydrated Mg-ringwoodite at high pressure (beyond ∼ 25 GPa). This result is compatible with the observation by Kleppe et al. (Phys Chem Miner 29:473–476, 2002a) who suggested the presence of Si–O–Si linkages and/or partial increase in the coordination of Si. Beyond the phase transition, the protons are delocalized and their environment on the ringwoodite structure is probably quite different from that at low pressure. Data obtained in situ at high pressures and temperatures are needed to better understand the effect of protonation on the structure and to better constrain this phase transition.  相似文献   
104.
隧道锚杆锚固质量无损检测技术   总被引:2,自引:0,他引:2  
采用声波检测仪,应用声频应力波在不同波阻抗面反射的能量和相位的变化原理,对隧道的锚杆锚固质量进行了无损检测试验研究,并对检测技术进行了探讨.结果表明,作为一种工程质量管理辅助手段,采用应力波对锚杆锚固质量进行无损检测,丰富了隧道围岩锚固质量检测方法,为隧道工程建设提供更好的质量保障.  相似文献   
105.
通过室内大型三轴实验,研究了吉林台水库爆破料在不同级配下的应力应变关系,得到了在一定击实功下爆破料的最大干密度随细料含量变化的规律,分析了爆破料在不同级配和不同围压下应力与应变的变化规律、轴向应变与体积应变的关系及抗剪强度变化特性.从微观的角度说明了变化规律产生的原因,得出爆破料的抗剪强度随级配的变化而变化的规律.  相似文献   
106.
青藏高原中部的东西向扩张构造运动   总被引:3,自引:0,他引:3  
系统分析了1933~2003年间青藏高原及其周缘发生的745个中、强地震的震源机制解,研究了高原地壳构造运动及其动力学特征。结果表明,大量正断层型地震集中发生在青藏高原中部海拔4000m以上的地区,其中许多地震是纯正断层型地震。震源机制结果显示,该区正断层型地震的断层走向多为南北方向,断层位错矢量的水平分量均位于近东西方向,这表明青藏高原高海拔地区存在着近东西方向的扩张构造运动。地震震源应力场的研究结果表明,在高原中部高海拔地区,E-W向或WNW-ESE向的水平扩张作用控制着该区的地壳应力场。青藏高原高海拔地区近东西方向的扩张构造运动是该区引张应力场的作用结果,其动力学原因可能与持续隆升的高原自重增大引起的重力崩塌及其周边区域构造应力状况有关。而青藏高原周缘地区,除了东部边缘外,南部的喜马拉雅山前沿以及青藏高原的北部、西部边缘所发生的绝大部分地震都是逆断层型或走滑逆断层型地震。在青藏高原周缘地区,北东或者北北东方向水平挤压的构造应力场为优势应力场。在中国西部的大范围内,主压应力P轴水平分量位于NE-SW方向,形成了一个广域的NE-SW方向的挤压应力场。青藏高原及其周缘应力场特征表明,印度板块的北上运动以及它与欧亚板块之间的碰撞所形成的挤压应力场是高原强烈隆起的直接原因。在青藏高原中南部形成了近东西向引张应力场为主的区域,并以东西向扩张构造运动部分释放其应力积累。研究高原高海拔地区的引张应力场和近东西向扩张构造运动的特征,对于认识青藏高原强烈隆起的地球动力学过程与机制,有着重要的理论意义。  相似文献   
107.
对中国大陆科学钻探主孔的岩心进行了声发射测量,确定了301~1531m深度的最大主应力。并与钻孔崩落法(深度1269~1655m)测量结果进行了对比,结果表明,声发射测量所得测值基本上落在钻孔崩落法测值的趋势线上,两种方法所得结果一致,说明测量结果可信。测量结果表明科学钻探主孔地应力大小随深度增加,在浅部301m最大主应力为13.4MPa,在深部1655m为55.2MPa。随深度的增加率为0.0279MPa/m。最大主应力方向为N54°±3.3°E,且方向不随深度变化。  相似文献   
108.
山东省临邑县临盘镇地裂冒喷水油灾害初步分析   总被引:1,自引:0,他引:1  
1998年7月临邑县临盘镇西十二里村发生地裂冒喷水油灾害:对此次灾害研究认为,灾害发生前地应力已有明显改变,这种改变应是自然因素造成的,油田开发难以直接引发断层的活动。因此,地裂冒喷水、油灾害是因活动性断昙——临邑断层在局部薄弱部位活动而引起的,断层活动使地下流体顺断层涌出地表,是自然地质灾害。灾害的诱发因素是多方面的,其中地面不均衡沉降耦合使得地下应力布不均习,导致在断层的薄弱部位产生应力集中,并引发灾害发生。灾害发生已使得地下不均衡应力得以释放,近期内再次发生灾害的可能性不大。  相似文献   
109.
采用共轭剪节理应力反演方法,恢复了邯郸-峰峰矿区晚古生代以来的3期古构造应力场,进而探讨了煤田构造的演化历史,将其分为4大阶段:①中生代早期近NS向挤压,煤系后期改造初动期;②中生代晚期SE-NW向挤压,奠定煤田构造格架的基础;③中生代末至古近纪NW-SE向拉张,煤田构造格架定型;④新近纪以来近东西向拉张,煤田构造的现代活动.  相似文献   
110.
西藏阿里地区札达沉积盆地活动构造   总被引:3,自引:2,他引:3  
野外初步调查结果表明,札达盆地不仅边界断裂存在较强烈的活动性,而且在盆地内部发现了较多的活动断层,同时还伴有大量的崩塌堆积。该调查结果为札达地区区域地壳稳定性的评价和青藏高原区域应力场的分析提供了宝贵的实际资料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号