首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   37篇
  国内免费   40篇
地球物理   14篇
地质学   216篇
海洋学   13篇
综合类   10篇
自然地理   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   11篇
  2017年   11篇
  2016年   8篇
  2015年   6篇
  2014年   11篇
  2013年   6篇
  2012年   11篇
  2011年   8篇
  2010年   3篇
  2009年   20篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   11篇
  2003年   18篇
  2002年   7篇
  2001年   6篇
  2000年   7篇
  1999年   10篇
  1998年   7篇
  1997年   2篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1989年   2篇
排序方式: 共有254条查询结果,搜索用时 312 毫秒
51.
根据区域地震资料研究塔里木盆地塔东凸起西部中上奥陶统层序地层格架及沉积演化, 在中上奥陶统识别出了2个地震层序, 发现了叠置的丘状前积反射地震单元, 综合岩心观察、岩屑录井和薄片资料, 确认为海底扇沉积体.海底扇沉积主要由块状砂、砾岩, 递变层理砂岩, 平行层理砂岩, 砂纹层理粉砂岩, 变形或包卷层理粉砂岩, 水平层理泥质粉砂岩或粉砂质泥岩, 块状或递变的粉砂质泥岩和泥岩等岩相组成, 形成于中扇和外扇环境, 物源来自研究区南部的岛弧带.海底扇的发现对于塔东凸起乃至整个塔里木盆地中上奥陶统油气勘探具有重要意义.   相似文献   
52.
南天山中段萨恨托亥大山口成矿带内的金矿赋存在浅变质浊积岩系碎屑岩内。本文以该带内2个典型金矿———大山口金矿和萨恨托亥金矿为例,对其成矿特征进行了初步研究。研究表明,金矿体受韧脆性剪切带控制,产状稳定,矿石类型简单,硫化物种类单一且含量较低。成矿可分为糜棱岩阶段和石英脉阶段,与控矿的韧脆性剪切带的发展演化各阶段相对应。成矿发生于中低温条件下弱酸性向中性环境过渡阶段,成矿流体是以深源流体(含岩浆热液)为主的多源混合热液(构造热液)。成矿作用为构造成岩成矿(韧性剪切带成矿),矿床成因类型为(构造)热液型金矿,  相似文献   
53.
Co-genetic debrite–turbidite beds are most commonly found in distal basin-plain settings and basin margins. This study documents the geometry, architectural association and paleogeographic occurrence of co-genetic debrite–turbidite beds in the Carboniferous Ross Sandstone with the goal of reducing uncertainty in the interpretation of subsurface data in similarly shaped basins where oil and gas is produced.The Ross Sandstone of western Ireland was deposited in a structurally confined submarine basin. Two outcrops contain co-genetic debrite–turbidite beds: Ballybunnion and Inishcorker. Both of the exposures contain strata deposited on the margin of the basin. An integrated dataset was used to characterize the stratigraphy of the Ballybunnion exposure. The exposure is divided into lower, middle, and upper units. The lower unit contains laminated shale with phosphate nodules, structureless siltstone, convolute bedding/slumps, locally contorted shale, and siltstone turbidites. The middle unit contains co-genetic debrite–turbidite beds, siltstone turbidites, and structureless siltstone. Each co-genetic debrite–turbidite bed contains evidence that fluid turbulence and matrix strength operated alternately and possibly simultaneously during deposition by a single sediment-gravity-flow event. The upper unit contains thin-bedded sandy turbidites, amalgamated sandy turbidites, siltstone turbidites, structureless siltstone, and laminated shale. A similar vertical facies pattern is found at Inishcorker.Co-genetic debrite–turbidite beds are only found at the basin-margin. We interpret these distinct beds to have originated as sand-rich, fully turbulent flows that eroded muddy strata on the slope as well as interbedded sandstone and mudstone in axial positions of the basin floor forming channels and associated megaflute erosional surfaces. This erosion caused the axially dispersing flows to laterally evolve to silt- and clay-rich flows suspended by both fluid turbulence and matrix strength due to a relative increase in clay proportions and associated turbulence suppression. The flows were efficient enough to bypass the basin center/floor, physically disconnecting their deposits from coeval lobes, resulting in deposition of co-genetic debrite–turbidite beds on the basin margin. The record of these bypassing flows in axial positions of the basin is erosional surfaces draped by thin siltstone beds with organic debris.A detailed cross-section through the Ross Sandstone reveals a wedge of low net-to-gross, poor reservoir-quality strata that physically separates sandy, basin-floor strata from the basin margin. The wedge of strata is referred to as the transition zone. The transition zone is composed of co-genetic debrite–turbidite beds, structureless siltstone, slumps, locally contorted shale, and laminated shale. Using data from the Ross Sandstone, two equations are defined that predict the size and shape of the transition zone. The equations use three variables (thickness of basin-margin strata, thickness of coeval strata on the basin floor, and angle of the basin margin) to solve for width (w) and trajectory of the basinward side of the low net-to-gross wedge (β). Beta is not a time line, but a facies boundary that separates sandy basin floor strata from silty basin-margin strata. The transition zone is interpreted to exist on lateral and distal margins of the structurally confined basin.Seismic examples from Gulf of Mexico minibasins reveal a wedge of low continuity, low amplitude seismic facies adjacent to the basin margin. Strata in this wedge are interpreted as transition-zone sediments, similar to those in the Ross Sandstone. Besides defining the size and shape of the transition zone, the variables “w” and “β” define two important drilling parameters. The variable “w” corresponds to the minimum distance a well bore should be positioned from the lateral basin margin to intersect sandy strata, and “β” corresponds to the deviation (from horizontal) of the well bore to follow the interface between sandy and low net-to-gross strata. Calculations reveal that “w” and “β” are related to the relative amount of draping, condensed strata on the margin and the angle of the basin margin. Basins with shallowly dipping margins and relatively high proportions of draping, clay-rich strata have wider transition zones compared to basins with steeply dipping margins with little draping strata. These concepts can reduce uncertainty when interpreting subsurface data in other structurally confined basins including those in Gulf of Mexico, offshore West Africa, and Brunei.  相似文献   
54.
西沙海槽沉积模式   总被引:1,自引:0,他引:1  
晚中新世琼东南盆地快速构造沉降,沉积欠补偿形成了西沙海槽。西沙海槽上部高陡带为悬浮沉积体系,下部低缓带为浊流滑塌沉积体系,槽底平缓带为河流沉积体系。不同于浊流沉积小而散,深海河流沉积为稳定的贯穿整个海槽的大储层。由于深海河流沉积体系稳、远、大的特点,其注定成为世界深水油气勘探的主要目标。  相似文献   
55.
Lacustrine turbidite of Chang-7 Member in the studied area consists of sihstone and fine sandstone with respect to grain size, which is feldspathic lithie sandstone, syrosem arkose and arkose with respect to mineral constitution affected by provenance. There are such apparent signatures as lithology, sedimentary structure, sedimentary sequence and well logs, to recognize turbidite. During the paleogeographic evolution of Chang-7 Member, lake basin and deep lake are both at their maximum extent during Chang-73 stage, resulting in the deposition of Zhangjiatan shale with widespread extent and of turbidite with fragmental-like. Deep lake line is gradually moving toward lake center and turbidite sand bodies are gradually turning better with better lateral continuity, connectivity and more thickness, from stages of Chang-73, Chang-72 and Chang-7t, which can be favorable reservoir in deep-water.  相似文献   
56.
本文简要介绍了浊积岩型金矿的概念、特征、成因和2个浊积岩型金矿的矿床实例,并对浊积岩型金矿概念和应用作了讨论。  相似文献   
57.
隆林县隆或金矿属微粒型金矿,具有多层位、层状矿体为主、矿石和矿物成分简单、沉积结构构造特征,属典型层控矿床。矿床成因与生物礁的消失、滑塌事件、深水火山碎屑硅泥质上超盆地的叠覆、以及有机质的热解和分异有关。火山作用提供金的来源,火山~碎屑~浊积岩相为矿源层和含矿层,并受沉积盆地的关闭和开启影响,形成成岩矿床、成岩~后生或后生矿床  相似文献   
58.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   
59.
彭志军  吴攀登  刘松柏  张鹏 《地质通报》2016,35(9):1506-1511
青海贵南县过马营一带隆务河组为一套典型的浊流沉积,对此套浊积岩的沉积特征进行研究。通过对过马营一带隆务河组浊积岩的岩石组合特征、地层层序及鲍玛层序特征分析,探讨其沉积环境特征,并与典型浊积扇模式对比,建立沉积模型。综合分析认为,隆务河组由下向上的3个段分别位于浊积扇的外扇、中扇、内扇,其中中扇辫状河道发育。此研究对于西秦岭造山带的沉积环境分析及构造演化具有重要的意义。  相似文献   
60.
The Kanmantoo Group of South Australia is a thick (~7–8 km) succession of predominantly clastic marine sedimentary and metasedimentary rocks that were deposited very rapidly in a localised basin (Kanmantoo Trough) during the Early Cambrian. Despite structural complexity and varying grades of metamorphism, a surprising amount of primary sedimentological information is still available. Although a variety of depositional facies are represented, the group is dominated by parallel, sharp‐based, mineralogically immature sandstone interbedded with mudstone. The sandstone beds are most commonly fine to medium grained, massive and lacking in obvious grading except at the top. Single beds often reach several metres in thickness and amalgamation of beds is not uncommon. We argue that these sandstone beds could be the products of sustained high‐density turbidity currents. Triggering mechanisms for such turbidity currents remain uncertain, but they may have been initiated as hyperpycnal flows during catastrophic flood events at the mouths of high‐load‐capacity rivers, or from the failure of unstable buildups of sediment on delta slopes. Palaeocurrent studies from sole marks suggest a southerly source, which was probably an active orogenic terrain in formerly contiguous Antarctica. It is likely that a major delta complex lay at the southern end of the basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号